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ABSTRACT 

SLEEP’S IMPACT ON MUSIC PROCESSING IN THE DEVELOPING BRAIN 

Rigel Leonard Baron 

Sleep plays a crucial role in human development, particularly in early childhood. 

While its influence on brain function is well documented, the relationship between sleep 

and auditory processing in the developing brain remains underexplored. The present 

study aimed to investigate how sleep duration impacts cortical responses to music, 

focusing on children aged 5 to 10. Of the 14 children recruited, 11 (6 female, 5 male) 

were included in the final analysis following EEG quality checks. Participants underwent 

standardized assessments to confirm normal hearing, language ability, and intelligence. 

Using a six-feature passive listening oddball paradigm, EEG data was recorded via a 64-

channel HydroCel Geodesic Sensor Net while children listened to the musical paradigm 

and engaged in quiet activities. Event-related potentials (ERPs) were analyzed across six 

music conditions: intensity, location, pitch, rhythm, slide, and timbre. Participants were 

divided into two groups based on average sleep duration (more or less than 10 hours per 

night). ERP data was evaluated using repeated measures ANOVA and cluster-based 

permutation testing. Results revealed that children who slept more exhibited more 

positive amplitude responses in all six conditions. Additionally, the study explored the 

role of mismatch negativity (MMN), a pre-attentive auditory response, and found that 

sleep-related differences in MMN were not significant, despite trends of MMN observed. 

Hemispheric analysis indicated a greater right hemisphere dominance in children with 



  

less sleep, while also displaying a greater sleep-related sensitivity to amplitude 

attenuation in the left hemisphere. These findings contribute new insights into the impact 

of sleep on auditory processing in children, suggesting that sleep may modulate brain 

responses within hemispheres, with greater ERP implications for understanding sleep as a 

confounding variable in cognitive studies and clinical research. 
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INTRODUCTION 

Evolution serves as the foundational mechanism through which all life on Earth 

has developed, from single-celled prokaryotes that emerged over 3.4 billion years ago, to 

the eventual rise of humans. Despite the complexity of this evolutionary timeline, it is 

difficult to argue that the process has been anything but remarkably efficient, culminating 

in species like Homo sapiens – biologically intricate and evolutionarily optimized. This 

transformation reflects both idiosyncrasies and shared traits with our evolutionary 

ancestors. Yet, even with extraordinary scientific advances, the purpose of many evolved 

characteristics remains elusive. One such mystery is the function of sleep. 

Sleep is a near-universal biological phenomenon, observed in organisms as simple 

as fruit flies and jellyfish, all the way to humans (Nath et al., 2017; van Alphen et al., 

2021). Its evolutionary persistence, despite rendering individuals inactive and vulnerable 

for extended periods, suggests it serves vital physiological functions. But how could a 

feature that places its host in a coma-like state for hours on end – time that could be spent 

hunting, forging, or defending oneself – survive the rigors of natural selection? Sleep, for 

all its waste, consuming nearly 30 years of a human's life, must possess one, if not a 

plethora of critical functions. This apparently high cost of sleep, laid against an 

evolutionary backdrop, makes understanding its function particularly compelling. 

While sleep affects the entire body, many of its most profound effects are 

concentrated in the brain. Electroencephalography (EEG), a noninvasive and relatively 

low-cost methodology, has become a cornerstone of sleep research (Al-Shama et al., 

2024; Lambert & Peter-Derex, 2023). EEG measures brain activation by capturing 

electrical activity generated from neuronal firing via electrodes placed on the scalp. 
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While this technology is by no means new, dating back to 1924, the past several decades 

have marked a notable adaptation in the way researchers use EEG to conduct research 

and analyze datasets. The 1960’s marked another era of EEG adaptation with a 

measurement known as an event-related potential (ERP), offering further insight in the 

cortical function of the brain at a specific moment in time. ERP research typically 

involves the presentation of a stimulus or event and subsequent measuring of the brain's 

electrical response. Unfortunately, given the extreme electrical and mechanistic 

complexity of the brain, especially when compared to a simple 64-electrode EEG, it is 

difficult to isolate the signal (ERP, or response to the stimulus) from the noise (the 

countless other processes the brain is engaged in at any given moment). To solve this, 

computational statistics will average the brain's response to a specific stimulus over the 

course of many trials, thus resulting in an ERP. This average, given a large enough 

sample size, will eliminate a substantial proportion of the noise, leaving the data with a 

pure ERP waveform, a temporal representation of the changing voltage in the brain. 

The same way in which EEG research evolved to incorporate new techniques and 

measurements, ERP research has cultivated its own nuances. Each wave that is generated 

in response to a stimulus contains different components. These are typically divided into 

N and P, representing negative and positive voltages, respectively. The negative and 

positive waves are further subdivided by their respective time after stimulus presentation. 

The P1 (also referred to as P50 in auditory EEG) wave is graphically represented by a 

positive inflection, peaking between 40 and 75 milliseconds (ms) after the stimulus 

presentation. The N1 (also referred to as N100) is graphically represented by a negative 

deflection with a trough somewhere between 90 and 200 ms. Additional waves follow the 
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same format, with P2 and P3 waves among popularly studied components of ERP (Sur & 

Sinha, 2009). The P1, N1, and P2 waves are often studied together and referred to as the 

obligatory auditory response (or P1-N1-P2 complex), as these waveforms are consistently 

and automatically produced by the brain and observed through EEG in response to 

auditory stimuli (Näätänen & Picton, 1987). 

In its totality, analysis of ERPs is one of the most foundational techniques EEG 

researchers use to study the human brain. Despite numerous variables that constrain the 

spatial accuracy of EEG and ERP data, these techniques still offer excellent temporal 

resolution and provide an objective methodology to garner a precise understanding of 

how the brain responds to any variety of circumstances. Because of this, ERPs have 

wide-ranging implications not only as a tool to better understand the brain, but also as a 

valuable diagnostic measure (Landa et al., 2014). Since their discovery, ERPs have 

attracted the attention of researchers across the world, leading to an abundance of 

research, yet due to their cross-discipline and near universal nature, it is difficult to 

imagine a future where ERP research reaches its terminus. One area of particular 

curiosity concerns the overlap between sleep research and ERP. Existing adult data has 

shown fairly conclusively that both sleep restriction and total sleep deprivation affect the 

brain’s raw ERP responses to simple auditory stimuli. An early study conducted by 

Morris et al. (1992) found significant attenuation of the P300 component (P3b) along 

with an increase in P300 latency following periods of sleep deprivation in adults. Further 

adult sleep deprivation research supported the earlier finding, confirming a decrease in 

P300 amplitude coupled with a decrease in amplitude of N200. Interestingly, this same 
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study noted no change in the N100 component but saw an increase in amplitude of P200 

(Lee et al., 2004).  

Self-rated psychological scales used in parallel revealed a connection between 

sleepiness and the decrease in amplitude of P300 and N200, while showing the increase 

in P200 amplitude reflected characteristics of a negative mood, rather than sleepiness 

(Lee et al., 2004). Total sleep deprivation has also been shown to attenuate ERP 

amplitudes in response to visual stimuli (Corsi-Cabrera et al., 1999). These are important 

findings because they demonstrate that sleep modulates sensory and cognitive brain 

responses and suggests that researchers and clinicians alike may benefits from factoring 

sleep into their studies as a confounding variable. 

Despite the breadth of research concerning sleep and ERPs in adults, there is a 

noticeable dearth of research investigating how sleep affects ERPs in children – an 

avenue certainly worth exploring. Investigating ERPs in children offers unique insights 

and perspectives that are largely unattainable in adult data. Childhood represents a critical 

stage of brain development for auditory processing, characterized by clear structural and 

neurophysiological distinctions from adults. These developmental differences suggest 

that children may process stimuli differently than adults during EEG studies (Boen et al., 

2022; Manzi et al., 2011; Panizza et al., 2021). Exploring these divergences – or any 

unexpected similarities – can offer new insights into the functional maturation of the 

brain and enhance our understanding of cognitive development. Unfortunately, studying 

sleep in children is not nearly as simple as studying sleep in adults. Rightfully so, 

children should not undergo total sleep deprivation, nor extended sleep restriction in the 

pursuit of research. However, these conditions are typically the means by which the 
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independent variable of sleep is manipulated in adults. Due to this, few studies have 

examined ERP responses in children in relation to sleep. Among the limited literature, 

existing data suggest that even minor disruptions in sleep can significantly affect 

neurocognitive functioning, often reflected as reduced amplitude in ERP components – 

particularly the P300 (Molfese et al., 2013). To build upon these preliminary findings, the 

current study aims to evaluate whether sleep consistently attenuates ERP responses when 

tested across a diverse and robust set of auditory stimuli. 

 In addition to general ERP components, one specific measure that has gained 

considerable attention in sleep-related research is mismatch negativity (MMN). Given its 

pre-attentive nature, MMN provides a unique opportunity to assess how sleep may 

influence automatic auditory processing. MMN typically appears as a negative deflection 

between 150 and 250 ms, elicited using an oddball paradigm. This type of response is 

exogenous and pre-attentive, thus it can occur without the prerequisite of attention, and 

does not require overt behavioral response (Näätänen et al., 2015). Importantly however, 

MMN is a difference waveform and thus cannot be seen by a lone standard graph of an 

ERP. Mathematically it is represented with the waveform generated by a deviant stimulus 

minus its standard waveform analog and is typically visualized on its own separate graph. 

As MMN measures the difference between the brain’s response to a standard versus a 

deviant stimulus, it is therefore commonly referred to as an index of automatic change-

detection, however competing hypotheses attempt to tease apart its neural origins. The 

model-adjustment hypothesis, for example, suggests MMN is elicited as the result of the 

brain’s top-down formation of a sensory predictive model around the standard stimulus. 

Consequently, if any following stimulus matches the preceding stimulus, the sound 
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undergoes repetition suppression, further reinforcing this top-down predictive model. 

However, if a deviant stimulus is introduced, the predictive model is no longer 

reinforced, and a more negative waveform is produced. An alternate explanation suggests 

that MMN’s origin is much simpler. The adaptation hypothesis posits neurons of the 

primary auditory cortex adapt to repeated exposure of standard stimuli, attenuating and 

delaying the N1 ERP component. Once a deviant stimulus is introduced, it interrupts the 

neuronal adaptation, triggering the neurons within the primary auditory cortex to “reset”, 

displaying a greater N1 response to the deviant stimulus. This break in the neuronal 

adaptation results in a deviant waveform that differs from the preceding response to a 

standard, and again, MMN would be observed (Fitzgerald & Todd, 2020; Garrido et al., 

2009; Näätänen et al., 2007). 

 Due to the nature and mechanisms of auditory MMN, a better understanding 

developed through research is critical to potentially uncovering insight into how different 

facets of acoustics impact our brain. The field of MMN research is broad and young, and 

many subfields are still in their infancy. To date, studies have shown MMN is often a 

valuable ancillary diagnostic tool, serving as a biomarker and early indicator for 

numerous cognitive pathologies including schizophrenia, autism spectrum disorder, 

attention deficit/hyperactivity disorder, and neurodegenerative diseases (Donaldson et al., 

2023; Ford et al., 2022; Lindín et al., 2013). MMN has even gone so far as to serve as an 

indicator of retained cognitive function in comatose patients, providing early notice of 

potential recovery (Zhou et al., 2021). While MMN has been utilized diagnostically for 

several decades, many of its important functions are still being uncovered, making 

comprehensive research into its facets even more necessary. 
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Among these sparsely studied facets, lies sleep and its role in MMN. The existing 

literature in this area is ambiguous at best, with some studies concluding that sleep 

deprivation, in one form or another, results in an attenuation of MMN (Donaldson et al., 

2023; Ford et al., 2022; Lindín et al., 2013; Zhou et al., 2021). Meanwhile, other studies 

offer an antithetical conclusion that sleep deprivation has no significant impact on MMN 

(Bortoletto et al., 2011; Gosselin et al., 2006; Muller-Gass & Campbell, 2019; Salmi et 

al., 2005). This inconsistency highlights a critical gap in our understanding of sleep’s role 

in the brain, particularly in children, and underscores the potential of MMN as a tool for 

assessing the relationship between sleep and brain development. Just as with sleep’s 

influence on raw ERP components, understanding its role in the developing brain holds 

significant potential. Given that MMN reflects the brain’s ability to form and maintain a 

sensory memory trace, investigating how sleep influences MMN offers important insight 

into how sleep may affect neural mechanisms of sensory memory, pattern learning, and 

change detection. Understanding this relationship could help clarify the broader role of 

sleep in supporting cognitive functions during critical periods of brain development. 

Due to MMN’s reliance on standard and deviant stimuli, the foremost 

methodology to elicit an auditory MMN response is through application of an oddball 

paradigm (Garrido et al., 2009). Oddball paradigms are typically sequences of tones 

where one stimulus, the standard, is played repeatedly, while a deviant stimulus is 

interjected into the sequence with the goal of producing tell-tale MMN activity. Existing 

data is most often derived from pure-tone oddball paradigms, in which the deviant 

stimulus only alters in pitch. Several sleep studies examine deviations in duration rather 

than frequency; however, few, if any, use a robust framework of deviant sounds. This is 
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the advantage of music. Music allows researchers to create oddball paradigms that 

deviate in a range of variables, not only pitch or duration. Beyond this, music has two 

additional advantages. One, especially in children, it is much easier to obtain greater 

quantities of data – most people, let alone young children, are not particularly keen on 

listening to repetitive tones for long durations, regardless of the task given to distract 

them. Music solves this, as children are more willing to listen to music for longer periods 

of time, allowing for the collection of greater volumes of data, without risking agitating 

the child; a risk that carries the potential for a decrease in EEG signal-to-noise ratio with 

an accompanying increase in undesirable EEG artifacts (DiStefano et al., 2019). Beyond 

their numerous advantages, musical paradigms offer the distinct benefit of functioning as 

a universal medium, facilitating the assessment of children across diverse linguistic 

backgrounds. Finally, music provides greater ecological validity than pure-tone or single-

deviant paradigms, as it better represents the diversity and complexity of sounds 

experienced in everyday life. More broadly, music – and specifically, the oddball 

paradigm used in this study – incorporates a range of acoustic modifications while 

presenting stimuli in a structured musical arrangement, making it more reflective of 

natural sound processing, which may yield data that more closely represents typical brain 

activity (Kliuchko et al., 2016). 

Music processing is primarily associated with the right hemisphere of the brain, 

which is more actively engaged when listening to music, though the left hemisphere also 

plays a role (Evers et al., 1999; Kimura, 1964). Despite existing knowledge, research 

remains inconclusive regarding the influence of sleep on music processing across 

hemispheres. In one study, researchers analyzed both music and language processing 
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using psychoacoustic behavioral tests: participants were asked to discriminate between 

monoaurally presented melodies for music processing, and to identify monoaurally 

presented words that were filtered to distort their acoustic features for word processing. 

In both tasks, participant accuracy served as the primary outcome measure. The study 

found that sleep deprivation impaired word processing presented to the left ear and music 

processing presented to the right ear. Due to the brain's contralateral connections between 

the ears and hemispheres, word processing – primarily a left-hemisphere function – was 

disrupted on the right side of the brain, while music processing, which is predominantly 

right-hemispheric, was more impaired on the left. This suggests an inverse relationship 

between the hemisphere experiencing most activation and the hemisphere that 

experiences the most attenuation caused by insufficient sleep. Simply put, if a task is left 

hemisphere dominant, the right hemisphere’s activity would be dampened. This study 

also examined neurophysiological measures, noting a significant increase in P300 and 

MMN latency in an experimentally sleep deprived group, however it noted no significant 

amplitude attenuation in either condition. While these are insightful findings, the study 

only observed the relationship between hemispheric involvement by means of a 

participant’s behavioral measures and did not directly compare neurophysiological data 

between the left and right hemispheres (Díaz-Leines et al., 2017). Additional studies 

complicate the previous findings by presenting conflicting data. These studies show that 

spatial working memory, which is primarily a right-brain function, was more diminished 

in the right hemisphere than in the left. As a result, brain activity became more 

symmetrical, as opposed to the asymmetry suggested in the Díaz-Leines data (Peng et al., 

2020). This notion that the brain's dominant region experiences greater activity reduction 
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than its non-dominant region is also supported by behavioral data. A 2004 study found 

that the right hemisphere showed greater impairment when recalling and identifying 

emotional facial expressions – a task typically dominated by the right hemisphere in 

healthy individuals. (Pallesen et al., 2004). Overall, existing data remains inconclusive 

about how sleep affects activity levels in each hemisphere of the brain. One possible 

explanation for the conflicting results is a regional task-based hypothesis, which suggests 

that sleep’s impact on hemispheric activity modulation is not governed by a single rule 

that can be reduced to the hemispheres involved. Instead, its effects vary depending on 

the specific task being performed and the corresponding brain regions or networks 

involved. Building on this idea, the current study aims to gather additional regional and 

hemispheric data while investigating the underlying mechanisms of hemispheric activity 

through the analysis of detailed neurophysiological music data in children. 

Ultimately, despite prior electrophysiological research on sleep’s role in the brain, 

significant gaps persist, particularly in our understanding of sleep’s impact on the 

developing brain. The present study aims to address these gaps by utilizing 

electroencephalography and a unique musical paradigm to examine three distinct yet 

interconnected measures of neurophysiological function. First, it investigates sleep’s 

effect on ERPs. While existing research in adults suggests that insufficient sleep 

generally attenuates ERP amplitudes, data on how this phenomenon affects children 

remains limited. Second, the study explores the role of sleep in modulating MMN, a 

measure with inconclusive findings in adults and no existing data in children. Lastly, this 

study examines how sleep influences neural activity in the left versus right hemispheres. 

Current findings in this area remain inconsistent, presenting multiple hypotheses 
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regarding how varying levels of sleep impacts potential differences in hemispheric 

modulation. Together, this study seeks to provide a novel perspective on sleep’s role in 

the developing brain by integrating rarely studied electrophysiological data in children 

with a musical paradigm to observe changes in cortical activity. The present findings may 

provide valuable diagnostic insights for considering sleep as a confounding variable in 

clinical settings while also contributing to a broader understanding of sleep’s impact on 

brain function. 
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METHODS 

Participants 

EEG data were collected from 14 children, aged 5 to 10 years, each of whom 

listened to a multifeature passive listening oddball paradigm once, yielding a total of 14 

datasets. Data from three participants were excluded due to excessive noise in the EEG 

recordings following post-processing, resulting in a final sample of 11 participants for 

analysis. 

Sleep data was collected for each participant covering the seven nights prior to 

and including the night before EEG testing. On the day of testing, participants were asked 

to estimate their nightly sleep duration by reporting estimated bedtimes and waketimes. 

Parental input was used in all cases to verify bedtime and waketime estimates. These 

reports were averaged across the seven nights to calculate each child’s mean nightly sleep 

duration. Based on a median value of approximately 10 hours per night, participants were 

divided into two groups: those averaging more than 10 hours per night (Sleep More) and 

those averaging less (Sleep Less). These groups were used for all statistical comparisons 

(Table A1; Appendix A). 

Additionally, children completed a qualitative assessment using the Pictorial 

Sleepiness Scale (PSS; Maldonado et al., 2004), a visual tool designed to assess 

subjective sleepiness in young children, similar in purpose to the Karolinska and Stanford 

Sleepiness Scales (Åkerstedt & Gillberg, 1990; Hoddes et al., 1973). Older children 

(closer to age 10) were generally able to report their sleep habits and PSS ratings 

independently, while younger participants often required parental assistance. Although 
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the qualitative sleepiness ratings were not included in the statistical analysis, they present 

a potential avenue for future exploration. 

Of the 11 children whose data was included in the final analysis, six were female 

and five were male. Several additional metrics were gathered on the participating 

children to control for potential confounds. To ensure children fell within normal ranges 

for hearing, language, and intelligence, all children were given an intelligence test 

(TONI-4; Brown et al., 2010), an English language test (PPVT-5; Dunn et al., 2019), and 

hearing test at the time of their participation. Also, the parents/guardians were asked 

whether their child spoke additional languages. If the child was able to speak more than 

one language, they were given language tests to assess their proficiency in the additional 

languages. Parents/guardians completed a questionnaire regarding the child’s musical 

background. The study was approved by the human subject research institutional review 

board at St. John’s University, New York, and was conducted in compliance with the 

Declaration of Helsinki. Parental consent was obtained from the parent/legal guardian(s) 

for each participant. 

Oddball Paradigm 

 The present multifeature mismatch negativity oddball paradigm was adapted as a 

hybrid of the designs described by Vuust et al. (2011) and Kliuchko et al. (2016), while 

retaining the acoustic modifications originally employed in the Vuust et al. paradigm. 

The paradigm itself consists of a piano composition arranged in an Alberti bass sequence, 

based on a Western arpeggio chord progression, with notes arranged in groups of four, 

where the third note in every other sequence of four serves as a deviant. To introduce 

musical variability, the key was changed every sixth measure to one of 12 major or 12 
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minor keys, allowing each of the six total deviants to be presented once per measure and 

key. Keys were pseudorandomized such that no key was repeated until all 24 had been 

cycled through. To maintain consistency, keys were centered around C4, with bass notes 

ranging between F3 and E4. The presentation of deviants throughout the paradigm was 

also pseudo-randomized and deviants were altered from their standard counterparts in 

one of six acoustical modifications: pitch, timbre, location, intensity, slide, or rhythm 

(Figure 1). Each note, or stimulus, lasts 200 ms with 5 ms allotted for fading in and out at 

the beginning and end of the note with an interstimulus interval of 5 ms. The experiment 

paradigm was presented to each participant on a single day for 14 minutes.  

 

  

Figure 1. Auditory Oddball Paradigm 

 

EEG Acquisition & Experimental Procedure 

Prior to EEG setup, head circumference was measured to determine appropriate 

net size. Each participant was then fitted with a 64-channel HydroCel Geodesic Sensor 

Figure 1. Auditory Oddball Paradigm 

Present auditory oddball paradigm comprising repeating four-note sequences, with the third 
note in alternate sets designated as a deviant stimulus (modified from Vuust et al., 2011). 
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Net (Electrical Geodesics, Inc., 2007), with Cz serving as the reference electrode. Six 

frontocentral sites (Appendix C; C3, C4, Cz, F3, F4, and Fz) were selected for MMN 

analysis (Hao Hsieh et al., 2018; Kliuchko et al., 2016; Shafer et al., 2010) (Figure B1; 

Appendix B). Electrode impedances were kept below 10 kΩ. EEG was recorded at a 

1000 Hz sampling rate with an online bandpass filter of 0.1-100 Hz. Participants were 

then seated in a sound-attenuated, electromagnetically shielded booth, where electrode 

connectivity across all 64 channels was verified. Once setup was complete, the booth 

doors were closed, and participants began the auditory oddball paradigm. Each 

participant was exposed to 144 deviant trials for each of the six acoustic conditions – 

pitch, timbre, location, intensity, slide, and rhythm – resulting in a total of 864 deviant 

trials per participant. For data analysis, 432 standard trials were associated with each 

deviant category, based on a 3:1 standard-to-deviant ratio, yielding a total of 2,592 

standard trials. During EEG recording, children were allowed to engage in quiet activities 

of their choice (e.g., drawing, tablet-based games) to remain calm and reduce movement 

artifacts. Seating arrangements were individualized: some children sat alone, others with 

a parent or researcher. Researchers remained in the booth for participants who required 

support due to restlessness or attentional difficulties, in order to minimize EEG noise.  

Data Preprocessing 

Initial preprocessing and segmentation were performed using NetStation software 

(Electrical Geodesics, Inc.). For offline processing, EEG data were band-pass filtered 

between 0.1 and 30 Hz using a finite impulse response (FIR) filter. The FIR filter has a 

linear phase response, ensuring accurate preservation of signal timing and waveform 

shape. The high pass and low pass filter were justified given the limited distortion to 
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individual data and the concentration of MMN energy in the 2 to 5 Hz frequency bands 

(Picton et al., 2000; Rousselet, 2012). Following this, data were exported to BESA (Brain 

Electrical Source Analyses) Research 7.1 (BESA GmbH, Germany) for artifact correction 

and averaging. Ocular artifacts (e.g., blinks) were automatically removed using BESA’s 

standard averaging algorithm, followed by manual inspection to remove excessively 

noisy channels. During offline processing in BESA, zero-phase filters were applied: a 

high-pass filter at 0.3 Hz (12 dB/octave slope) and a low-pass filter at 20 Hz (24 

dB/octave slope). EEG data were segmented into -200 ms to 1500 ms epochs and time-

locked to the onset of the first stimulus in each four-note sequence. Noisy channels were 

interpolated with BESA spline interpolation using data from neighboring electrodes, with 

total interpolations kept under 15% to ensure data quality. 
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DATA ANALYSIS AND RESULTS 

Event Related Potentials 

 Prior to the statistical tests, data was segmented. Given the high sampling rate of 

1000 Hz, the data was time averaged into 20 ms bins to reduce data volume and number 

of comparisons. Since the musical paradigm was arranged in an Alberti bass pattern 

where four notes were played per trial, the data was then partitioned into four note epochs 

to fit this sequence. To do this the data was further truncated to include a range of 0 ms to 

980 ms as 0 ms marked the onset of the first stimulus, 205 ms the second stimulus, 410 

the third stimulus, and 615 the fourth stimulus so the range of 0 ms to 980 ms included a 

full view of the ERP responses to each stimulus without including extraneous pre-

stimulus data. The data was further binned into categories to include amplitude (as 

measured in microvolts) for each participant, in each music condition (i.e.: intensity, 

rhythm, pitch, slide, timbre, and location), and at each of the six scalp sites used for data 

analysis (i.e.: C3, C4, Cz, F3, F4, Fz).  

Following data rearrangement, repeated measures Analysis of Variance 

(ANOVA) was used to identify pattern deviance across the main effects of sleep group 

(Sleep More versus Sleep Less), electrode site, and music condition, as well as the 

interactions between sleep and site, sleep and condition, site and condition, and the three-

way interaction among sleep, site, and condition, on ERP amplitude responses. This was 

done to determine whether sleep, electrode selection, or music condition independently or 

interactively influenced ERP amplitudes. Follow-up repeated measures two-way 

ANOVAs were conducted separately for each music condition for the purpose of 

evaluating the effects of sleep group, electrode site, and their interaction for each music 
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condition. This allowed for more targeted analysis of how sleep-related differences might 

vary depending on the type of musical deviance. To complement these analyses, cluster-

based permutation testing was performed to assess sleep group differences in ERP 

amplitude across multiple time windows (0-200 ms, 200-400 ms, 400-600 ms, and 600-

800 ms). This approach was used to control for multiple comparisons across time and 

space and to identify temporally and spatially connected clusters where sleep group 

differences were statistically robust. 

Step 1: Three-way Repeated Measures ANOVA The first step in the data analysis 

procedure involved examining whether sleep quantity influenced EEG amplitudes across 

scalp sites and music conditions using a repeated measures factorial three-way ANOVA. 

In this test, sleep group was treated as a between-subjects factor, based on each 

participant’s average nightly sleep duration during the week preceding testing. 

Participants who averaged more than 10 hours of sleep per night were placed into the 

"Sleep More" group, while those who averaged less than 10 hours per night were placed 

into the "Sleep Less" group. Electrode site (C3, C4, Cz, F3, F4, Fz) and music condition 

(pitch, timbre, location, intensity, slide, and rhythm) were treated as within-subjects 

factors, as each participant contributed data across all sites and conditions. The analysis 

was conducted with trial-level EEG amplitude data, averaged across all time points using 

RStudio utilizing the RVAideMemoire package. Results revealed a significant main 

effect of sleep group (p < 0.001), as well as significant interactions between sleep and site 

(p < 0.001), sleep and condition (p < 0.001), and a three-way interaction among sleep, 

site, and condition (p < 0.001). These findings suggest that the influence of sleep on EEG 

amplitudes varies depending on both the electrode location and the type of musical 
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deviance in a given epoch. Follow-up analyses were performed to further explore the 

nature of these interactions. 

Step 2: Two-way Repeated Measures ANOVA The second step narrowed the 

comparisons down to a two-way ANOVA, again comparing the difference that may exist 

between the two sleep groups (participants who averaged more than 10 hours of sleep per 

night were placed into the "Sleep More" group, while those who averaged less than 10 

hours per night were placed into the "Sleep Less" group), however this time comparing 

average amplitudes across time for sleep and site within each music condition. Due to the 

increased number of ANOVAs performed (one for each music condition) a False 

Discovery Rate (FDR) correction was applied to the p values to reduce the Family-Wise 

Error Rate (FWER) – the probability of making one or more Type I errors (false 

positives) – induced by multiple comparisons. FDR was selected over similar correction 

methodologies such as a Bonferroni correction due to the low number of comparisons 

and overly conservative nature of Bonferroni – often increasing Type II errors (false 

negatives). Following this, p values for sleep x site interactions in all music conditions 

showed significance (p < 0.001), while sleep’s individual impact on all six music 

conditions also showed significance (timbre: p < 0.0241, intensity: p < 0.001, location: p 

< 0.001, rhythm: p < 0.001, slide: p < 0.001, pitch: p < 0.0174). The significance detected 

within this step provided a statistical justification for a third step within the model.  

Step 3: Time Window Permutation Testing To analyze the effect sleep may play on 

ERPs in different time periods, data was segmented into 200 ms time bins, corresponding 

roughly to the onset of each stimulus (0-200 ms, 200-400 ms, 400-600 ms, and 600-800 

ms). Subsequently, cluster-based permutation statistics were performed between sleep 
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groups (Sleep More versus Sleep Less) for all data sites and music conditions on all 200 

ms time bins (250 permutations). Cluster permutation testing was employed in this 

context to control the FWER and address the issue of multiple comparisons. This 

approach offers several advantages over traditional correction methods such as FDR and 

Bonferroni, enhancing statistical power while accounting for the spatial and temporal 

dependencies inherent in the data (Maris & Oostenveld, 2007). This analysis revealed 

statistically significant clusters in all six music conditions. Intensity and location 

displayed significant clusters in the earlier time windows (0-400 ms) across a variety of 

sites but showed no consistently significant effect at a single set of sites across time 

windows. Pitch showed significant clusters in the earliest time bin (0-200 ms) at C3, Cz, 

and Fz. Rhythm showed significance across a range of time bins and sites. Slide and 

timbre showed the strongest significance with larger clusters across multiple sites and 

time bins, specifically within the 0-400 ms window (Table A2; Appendix A). 

Mismatch Negativity 

Peak Based Analysis A multi-tiered statistical framework was utilized to analyze MMN 

between sleep groups to determine if overall significance existed between MMN in the 

Sleep Less and Sleep More groups, with follow-on cluster-based permutation t-tests to 

determine how specifically MMN was represented at its canonical site, Fz. MMN was 

defined as the difference between the third stimulus (deviant) and second stimulus 

(standard) and calculated using the formula: 

𝑀𝑀𝑁 = 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑑𝑒𝑣𝑖𝑎𝑛𝑡 (400−600 𝑚𝑠) − 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 (200−400 𝑚𝑠) 

Peak analysis was performed mirroring the methodology from Vuust et al. (2011), using 

the mean MMN amplitude within a 40 ms window centered on the grand-average MMN 
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peak latency. No significant group differences were observed across the overall average 

(p = 0.91, Figure 2) or within individual music conditions (all p > 0.25, Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Overall Mean MMN Amplitude 

MMN amplitude values averaged across all sites and all conditions for both sleep 
groups. MMN calculated by averaging the 40 ms window surrounding the peak 
MMN value Error bars represent the variability within each group. 

 

Figure 2. Overall Mean MMN Amplitude  
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Cluster-Based Permutation Testing To complement the peak-based analysis, additional 

cluster-based premutation t-tests were used to determine whether there were any specific 

windows of time where sleep shows significance within the greater 200 ms bin of MMN. 

This analysis was performed only at the Fz site for all six music conditions. A cluster-

forming threshold of p < 0.05 was used, and 250 permutations were run to estimate null 

distributions. This analysis remained mostly consistent with peak analysis, showing only 

one window of significance between groups in the location condition 160-180 ms post 

stimulus onset with a statistically stronger (more negative) amplitude revealed in the 

Sleep More group. Additionally, visually in slide, rhythm, pitch, and timbre the Sleep 

More group had stronger amplitudes, however this distinction did not survive the 

significance threshold posed by the cluster-based permutation testing (Figure 4). 

 

Figure 3. Mean MMN Amplitude by Condition 

MMN amplitude values for each music condition, calculated by averaging the 40 ms window 
surrounding the peak MMN value. The analysis includes data from all sites, averaged across the six 
music conditions, and compared between the two sleep groups. Error bars represent the variability 
within each group. 
 

Figure 3. Mean MMN Amplitude by Condition 
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Figure 4. Difference Waveforms for Fz Electrode 

 

Hemispheric Analysis 

Paired t-Tests Finally, to assess hemispheric differences and the potential influence of 

sleep on these differences, analyses of raw EEG amplitude responses averaged across 

time and averaged across all music conditions were restricted to lateral electrodes only, 

excluding midline sites (Cz and Fz) from the original set of six (C3, C4, Cz, F3, F4, Fz). 

The resulting lateral electrodes were used for hemispheric analysis, with C3 and F3 

representing the left hemisphere, and C4 and F4 representing the right. These 

homologous electrode pairs (C3, F3; C4, F4) were then compared using paired t-tests. 

Analyses were separated based on the participant’s sleep group to determine how sleep 

quantity may impact hemispheric asymmetries. The resulting analysis showed a 

statistically significant right hemisphere dominance at frontal sites (t = 5.04, p = 0.007) 

for the sleep less group. Although additional comparisons did not reach statistical 

Difference waveforms obtained by subtracting the standard stimulus from the deviant stimulus at electrode 
Fz for each music condition, comparing both sleep groups. The grey area in the location graph highlights 
the region of significance identified during the permutation statistical analysis. 

 

Figure 4. Difference Waveforms for Fz Electrode 
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significance, the t-statistics suggest a trend toward right-hemisphere dominance at frontal 

sites and left-hemisphere dominance at central sites (Table A3; Appendix A). 

Modulation Index To quantify the effect of sleep within each hemisphere, a normalized 

metric – the Modulation Index (MI) – was computed using raw EEG amplitude responses 

averaged across time and averaged across all music conditions at the lateral electrode 

pairs (C3, F3; C4, F4). The MI reflects the relative amplitude difference between the 

Sleep Less and Sleep More groups, allowing comparison of how strongly sleep 

modulates activity in the left versus right hemisphere. MI is calculated through the 

formula: 

𝑀𝐼 =
𝑆𝑙𝑒𝑒𝑝 𝐿𝑒𝑠𝑠 − 𝑆𝑙𝑒𝑒𝑝 𝑀𝑜𝑟𝑒

𝑆𝑙𝑒𝑒𝑝 𝐿𝑒𝑠𝑠 + 𝑆𝑙𝑒𝑒𝑝 𝑀𝑜𝑟𝑒
 

Here, Sleep Less refers to the average amplitude across all times and music conditions for 

all participants within that group, while Sleep More represents the corresponding average 

for its group. The grand average MI across both hemispheres was -0.37, indicating that 

participants in the Sleep More group exhibited higher amplitudes across all conditions 

and lateral electrode sites –consistent with findings from the repeated measures ANOVA. 

Hemisphere-specific analyses revealed an MI of -0.49 in the left hemisphere and -0.26 in 

the right, suggesting that sleep may exert a stronger modulatory influence on neural 

activity in the left hemisphere (Figure 5). A permutation test (10,000 iterations) was 

performed on the indices, revealing a significant difference between the MI of the left 

and right hemispheres (p < 0.001). 
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Figure 5. Hemispheric Comparison of Brain Activity 

 

Source Analysis To explore hemispheric trends in brain activity, source localization was 

performed using BESA’s integrated source analysis software. The analysis was intended 

to visualize general patterns of hemispheric activation, rather than to provide statistical 

evidence for lateralization related to music processing or sleep. Two grand average files 

were created – one for the Sleep Less group and one for the Sleep More group – 

incorporating data from all music conditions across all 64 scalp sites. To streamline 

processing, the time window was limited to 0-800 ms, which captured the most 

prominent neural responses. The resulting data was analyzed using Classical LORETA 

(Low Resolution Electromagnetic Tomography) Analysis Recursively Applied (CLARA) 

(Figures B2 & B3; Appendix B). 

  

This figure represents the average amplitude recorded across all scalp sites and music conditions. This 
figure compares mean amplitudes between both sleep groups in the left and right hemispheres. The 
indicated regions display what the calculation of modulation index represents: the relative differences 
between sleep conditions in the left and right hemispheres. 

 

Figure 5. Hemispheric Comparison of Brain Activity 
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DISCUSSION 

The present study aimed to elucidate the role of sleep in the developing brain by 

examining electrophysiological responses to a music-based paradigm in children. 

Specifically, it investigated (1) sleep’s general effect on ERP amplitude, (2) its influence 

on MMN responses, and (3) the hemispheric implications of sleep quantity on brain 

function. A statistical approach was employed to address each of these components, 

offering both a framework for interpreting the current findings and a roadmap for future 

inquiry. While the study adds valuable child-specific data to an area of research largely 

centered on adults, the results must be interpreted with caution due to limitations such as 

small sample size and the observational nature of the study’s approach to sleep. To fully 

unpack the significance and implications of the findings, each core domain is discussed 

individually, followed by a synthesis of how these elements converge to inform our 

broader understanding of sleep and auditory processing in the developing brain. 

Event Related Potentials 

The present findings align with prior research demonstrating that sleep loss attenuates 

ERP responses. This effect has been well-documented in adults and, to a very limited 

extent, in children (Molfese et al., 2013; Morris et al., 1992). The current study extends 

these findings by confirming that sleep significantly impacts ERP amplitudes in children, 

supporting the notion that sleep modulates auditory processing. Importantly, this 

attenuation was observed across all six musical deviant conditions, indicating that the 

effect of sleep is robust and not limited to a specific type of auditory manipulation. The 

relatively weaker sleep-related effects observed for location deviants may be partially 

explained by the method of stimulus delivery. In the present study, location changes were 
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presented through external speakers rather than isolated earphones. This setup may 

naturally blur the differences heard between the ears due to overlapping acoustic 

information. This may have reduced the salience of spatial differences, making neural 

responses to location deviants weaker overall and less sensitive to sleep-related 

modulation. The relatively weaker sleep-related difference in pitch and intensity deviants 

may be explained by the basic sensory processing mechanisms engaged during audition 

of these deviants, features that may be comparatively resilient to moderate sleep 

disruption. Pitch discrimination, for example, largely engages the early auditory cortex 

with limited reliance on higher-order integration. Intensity detection, being a low-level 

sensory function is also typically robust against attentional fluctuations or cognitive 

fatigue (Näätänen & Picton, 1987). In contrast, auditory features requiring more complex 

temporal or spectral integration - such as timbre and slide - may be more cortically 

taxing, thus exhibiting stronger susceptibility to the effects of reduced sleep (Tervaniemi 

et al., 1994). While the primary focus of the raw ERP analysis was not on individual 

deviant types, the broad impact across conditions suggests that reduced sleep generally 

dampens cortical responsiveness to auditory inputs. Permutation-based statistical analysis 

further validated these effects, revealing significant clusters predominantly in early time 

windows – prior to the deviant note – regardless of condition. This pattern is expected as 

notes played prior to the deviant would be unaffected by the upcoming deviant condition. 

The relative absence of significance in the 400-600 ms window, when the deviant notes 

typically occurred, supports the MMN results and suggests that sleep-related differences 

may manifest as more salient in general auditory processing. Given that the deviant 

musical feature occurs at approximately 400 ms, significant clusters detected in the 0-200 
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ms and 200-400 ms windows likely represent baseline auditory processing differences 

rather than direct effects of the deviant feature. Thus, despite the logical explanation for 

why acoustical modifications such as timbre and slide may be more affected by sleep 

group, early significant effects should be interpreted cautiously, as they more likely 

reflect sleep-related modulation of general auditory responsiveness rather than acoustic 

feature deviance detection. Although specific ERP components were not isolated in this 

waveform analysis, the observed patterns reinforce trends seen in adult data and 

contribute novel insight to the limited literature on sleep and auditory ERPs in children. 

Notably, the large number of trials per condition strengthens the reliability of these 

findings within subjects, however the study’s small sample size may have led to 

unwanted between subject variance and leaves room for future research to shore up such 

gaps. 

Mismatch Negativity 

Existing literature presents conflicting findings regarding the influence of sleep 

manipulation on MMN, with some studies supporting a measurable effect (Donaldson et 

al., 2023; Ford et al., 2022; Lindín et al., 2013; Zhou et al., 2021) and others finding none 

(Bortoletto et al., 2011; Gosselin et al., 2006; Muller-Gass & Campbell, 2019; Salmi et 

al., 2005). Against this backdrop, the present study examined whether sleep quantity 

affects MMN responses to various deviant musical conditions in children. The use of a 

musical paradigm and a younger population represents a novel contribution to the MMN 

literature. However, statistical analysis did not reveal a significant relationship between 

sleep quantity and MMN amplitude across conditions. While permutation testing 

identified a single significant cluster – a 20 ms region within one of six musical 
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conditions – this isolated result does not provide strong evidence to reject the null 

hypothesis. Thus, the data do not offer conclusive support for the hypothesis that sleep 

quantity significant impacts MMN responses in children. 

Despite the lack of statistical significance, visual inspection of waveforms 

suggests consistent differences in MMN responses between children who slept more and 

those who slept less in nearly all conditions. These apparent trends raise the possibility 

that real effects were present but obscured by methodological constraints. Notably, the 

study did not include an experimental manipulation of sleep, relying instead on 

naturalistic group assignment. Additionally, the sample size may have been insufficient 

to detect subtle group differences, especially given the known variability in EEG 

responses among children (Callaway & Halliday, 1973). These limitations highlight the 

potential for underpowered results and underscore the importance of replication using 

larger samples and controlled sleep conditions. Such approaches could reduce individual 

variability and enhance sensitivity to detect true group effects. 

Taken together, these findings suggest caution in drawing definitive conclusions 

about the relationship between sleep quantity and MMN responses in children. 

Nevertheless, the resulting conclusion is that MMN is relatively unaffected by sleep 

deprivation. This aligns with MMN’s role as a pre-attentive auditory mechanism – one 

that operates automatically and independently of higher-order cognitive processes such as 

attention and perception, which are themselves more susceptible to the effects of sleep 

loss (Chua et al., 2017; Liberalesso et al., 2012). If confirmed, this would imply that 

MMN may be a stable neurophysiological marker for children, even in the context of 

mild sleep deprivation. Despite this, until a concrete conclusion is reached regarding 



 30 

sleep’s role on MMN, it may behoove researchers and clinicians to consider lack of sleep 

as a potential confounding variable in MMN research, particularly in pediatric 

populations. 

Hemispheric Effects 

The hemispheric results of music processing in the present study, support existing 

findings suggesting a general, though subtle, lateralization toward the right hemisphere 

during music processing (Evers et al., 1999; Kimura, 1964). Interestingly, when 

examining average EEG amplitudes across time and music conditions between 

homologous electrode pairs (left hemisphere: C3, F3; right hemisphere: C4, F4) within 

each sleep group, a statistically significant right-hemispheric dominance emerged at 

frontal sites in the Sleep Less group – indicating higher EEG amplitudes in this region. 

No other sleep-related hemispheric asymmetries were statistically significant. At first 

glance, this may appear to contradict the broader ERP findings showing attenuated 

amplitudes in participants with less sleep. However, follow-up analysis using a 

Modulation Index (MI) provided clarity: MI results revealed a greater modulatory effect 

of sleep in the left hemisphere, suggesting that the left hemisphere is more sensitive to 

sleep-related attenuation. This discrepancy suggests that the right hemisphere’s increased 

activity in the sleep less group may reflect a relative preservation of function, rather than 

an increase in resource allocation. In contrast, the left hemisphere showed a greater 

amplitude reduction, which may be driving the overall decrease in ERP amplitude 

observed in the sleep less group. This hemispheric asymmetry may be explained by the 

brain’s reliance on the right hemisphere during music processing, potentially making it 

more resilient to the effects of sleep loss. In this task-specific context, the right 
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hemisphere may be preserved to support key auditory processes, while the left 

hemisphere – less central to this task – may experience the greater impact of less sleep. 

This interpretation is consistent with the stable MMN responses observed in the sleep less 

group, suggesting that sleep loss does not necessarily impair essential auditory 

discrimination functions. Based on this modulatory hypothesis and MMN’s relative 

resilience to sleep related deficits, future research could investigate whether functions or 

regions adjacent to MMN in space or time are impaired by sleep loss – potentially 

revealing what, if any, neural processes are “sacrificed” to preserve MMN’s integrity. 

Overall, in relation to the hemispheric effects of sleep on music processing in the 

developing brain, the observed asymmetry may reflect a reallocation of 

neurophysiological resources to support task-relevant regions, or an intrinsic vulnerability 

of the left hemisphere to sleep loss in this context. 

Understanding how these findings fit within the broader literature is critical. The 

results of this hemispheric analysis generally align with prior research, and where they do 

diverge, they highlight variability in how sleep affects neural processing across different 

tasks and populations. The broader ERP waveforms analyzed here suggest a consistent 

pattern in the context of music processing, a greater contralateral attenuation under 

conditions of reduced sleep. That is, when the brain is processing music – a task with 

right hemispheric bias – the less involved hemisphere, in this case the left hemisphere, 

experiences attenuation (Díaz-Leines et al., 2017). This raises important questions as to 

why other cognitive tasks might show the opposite effect, an ipsilateral attenuation under 

similar sleep conditions (Peng et al., 2020). One possibility is that sleep interacts 

differently with specific cortical regions depending on the functional demands of the task. 
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Future research should move beyond broad hemispheric comparisons to examine regional 

dynamics in greater detail. Just as whole-scalp ERP averages can obscure critical 

differences, whole-hemisphere analyses may fail to capture the fine-grained effects of 

sleep on neural function. A region-specific approach may be key to advancing our 

understanding of how sleep loss alters the brain’s ability to process complex stimuli such 

as music. 
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CONCLUSION 

Overall, the present study contributes to the growing body of literature 

emphasizing the importance of sleep in auditory processing, extending existing adult 

research into younger populations (Colrain & Campbell, 2007). While the long-term 

developmental consequences of reduced sleep remain uncertain, these findings reinforce 

the critical role of sleep in supporting healthy neurophysiological function. The observed 

broad attenuation of ERP amplitudes across scalp sites and musical conditions in children 

who slept less suggests a general reduction in neural responsiveness. Although this 

attenuation is not inherently pathological, prior research has associated similar patterns of 

reduced ERP amplitude with various clinical conditions, including substance use, ADHD, 

antisocial behavior, and depression (Hosch et al., 2023; Patrick et al., 2006; Peisch et al., 

2021; Whalen et al., 2020). While the current findings do not imply a causal link between 

sleep patterns and psychopathology, they highlight shared neurophysiological features 

that warrant further investigation. 

These findings should be interpreted within the context of several limitations. 

Although the musical paradigm enabled many trials per participant, the overall 

participant sample size remains a limiting factor for generalizability. Moreover, the 

observational design of the study – while ecologically valid – may have blunted the 

effects of sleeping less when compared to controlled sleep manipulation studies. 

Nevertheless, this naturalistic approach offers unique insights into how typical sleep 

patterns impact cortical function in everyday contexts. Future studies aiming to explore 

sleep-related effects on neural processing should consider combining observational and 

experimental methods to balance ecological validity with causal inference. As noted in 
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the present study, increasing participant sample sizes is especially important in such 

designs. 

In summary, the current research underscores the importance of considering sleep 

as a potential confounding variable in child EEG studies. Even while MMN did not 

exhibit clear sleep-related differences, overall ERP amplitudes appear sensitive to natural 

variations in sleep quantity. Furthermore, the study introduces new perspectives on 

hemispheric effects in music processing and suggests opening the door to more regionally 

specific investigations into how sleep influences task-dependent neural responses. 

Ultimately, this study represents but a single drop in the expanding river of sleep and 

ERP research – yet it contributes to the current that is steadily flowing into a vast ocean 

of potential knowledge, deepening our understanding of sleep’s role in brain function, 

development, and the neurophysiological mechanisms underlying human cognition. 
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APPENDICES 

Table A1. Participant Sleep Data 

Sleep 
Metric 

Test 
Day 

TD-1 TD-2 TD-3 TD-4 TD-5 TD-6 Average 

*Quality 
of Sleep 
(PSS) 

1 1 1 2 2 3 1 1.57 

*Sleep 
Times 

07:00 
PM - 
09:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

 

*Duration 
of Sleep 
(hours) 

10 10 10 10 10 10 10 10.0 

Quality of 
Sleep 
(PSS) 

2 2 3 3 4 3 3 2.86 

Sleep 
Times 

11:00 
PM - 
09:30 
AM 

11:00 
PM - 
09:30 
AM 

10:30 
PM - 
06:50 
AM 

10:30 
PM - 
06:50 
AM 

10:30 
PM - 
06:50 
AM 

10:30 
PM - 
06:50 
AM 

10:30 
PM - 
06:50 
AM 

 

Duration 
of Sleep 
(hours) 

10.5 10.5 8.33 8.33 8.33 8.33 8.33 8.95 

Quality of 
Sleep 
(PSS) 

1 1 1 1 2 2 1 1.29 

Sleep 
Times 

08:00 
PM - 
06:30 
AM 

08:00 
PM - 
07:00 
AM 

08:00 
PM - 
07:00 
AM 

08:00 
PM - 
07:00 
AM 

08:00 
PM - 
07:00 
AM 

08:00 
PM - 
07:00 
AM 

08:00 
PM - 
07:00 
AM 

 

Duration 
of Sleep 
(hours) 

10.5 11 11 11 11 11 11 10.93 

Quality of 
Sleep 
(PSS) 

3 1 1 2 1 2 1 1.57 

Sleep 
Times 

09:30 
PM - 
10:30 
AM 

09:30 
PM - 
08:00 
AM 

09:30 
PM - 
07:00 
AM 

09:30 
PM - 
07:00 
AM 

09:30 
PM - 
07:00 
AM 

09:30 
PM - 
07:00 
AM 

09:30 
PM - 
07:00 
AM 

 

Duration 
of Sleep 
(hours) 

13 10.5 9.5 9.5 9.5 9.5 9.5 10.14 
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Quality of 
Sleep 
(PSS) 

1 5 1 1 1 1 1 1.57 

Sleep 
Times 

01:00 
AM - 
09:00 
AM 

10:00 
PM - 
08:00 
AM 

11:00 
PM - 
07:00 
AM 

11:00 
PM - 
07:00 
AM 

11:00 
PM - 
07:00 
AM 

11:00 
PM - 
07:00 
AM 

11:00 
PM - 
07:00 
AM 

 

Duration 
of Sleep 
(hours) 

8 10 8 8 8 8 8 8.29 

Quality of 
Sleep 
(PSS) 

1 1 1 1 1 1 1 1.0 

Sleep 
Times 

09:00 
PM - 
08:00 
AM 

09:00 
PM - 
08:00 
AM 

09:00 
PM - 
07:30 
AM 

09:00 
PM - 
07:30 
AM 

09:00 
PM - 
07:30 
AM 

09:00 
PM - 
07:30 
AM 

09:00 
PM - 
07:30 
AM 

 

Duration 
of Sleep 
(hours) 

11 11 10.5 10.5 10.5 10.5 10.5 10.64 

Quality of 
Sleep 
(PSS) 

3 1 1 5 5 1 1 2.43 

Sleep 
Times 

09:25 
PM - 
07:35 
AM 

09:25 
PM - 
07:35 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

 

Duration 
of Sleep 
(hours) 

10.166 10.166 10 10 10 10 10 10.05 

Quality of 
Sleep 
(PSS) 

1 1 2 4 1 1 1 1.57 

Sleep 
Times 

6:00  
PM - 
7:00 
AM 

9:00 
PM - 
7:00 
AM 

09:30 
PM - 
07:30 
PM 

09:30 
PM - 
07:30 
PM 

09:30 
PM - 
07:30 
PM 

09:30 
PM - 
07:30 
PM 

09:30 
PM - 
07:30 
PM 

 

Duration 
of Sleep 
(hours) 

13 10 10 10 10 10 10 10.43 

Quality of 
Sleep 
(PSS) 

2 1 1 1 1 1 1 1.14 

Sleep 
Times 

09:30 
PM - 

9:30 
PM - 

9:30 
PM - 

9:30 
PM - 

9:30 
PM - 

9:30 
PM - 

9:30 
PM - 
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08:00 
AM 

7:00 
AM 

7:00 
AM 

7:00 
AM 

7:00 
AM 

7:00 
AM 

7:00 
AM 

Duration 
of Sleep 
(hours) 

10.5 9.5 9.5 9.5 9.5 9.5 9.5 9.64 

Quality of 
Sleep 
(PSS) 

2 2 3 2 3 2 2 2.29 

Sleep 
Times 

10:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

09:00 
PM - 
07:00 
AM 

 

Duration 
of Sleep 
(hours) 

9 10 10 10 10 10 10 9.86 

Quality of 
Sleep 
(PSS) 

1 2 4 5 5 4 4 3.57 

Sleep 
Times 

09:30 
PM - 
07:05 
AM 

10:00 
PM - 
07:50 
AM 

09:30 
PM - 
07:05 
AM 

09:30 
PM - 
07:05 
AM 

09:30 
PM - 
07:05 
AM 

09:30 
PM - 
07:05 
AM 

09:30 
PM - 
07:05 
AM 

 

Duration 
of Sleep 
(hours) 

10.42 9.83 10.42 10.42 10.42 10.42 10.42 10.34 

Quality of 
Sleep 
(PSS) 

3 5 2 2 2 1 1 2.29 

Sleep 
Times 

01:10 
AM - 
09:00 
AM 

09:00 
PM - 
07:15 
AM 

09:00 
PM - 
07:15 
AM 

09:30 
PM - 
07:15 
AM 

09:30 
PM - 
07:15 
AM 

09:30 
PM - 
07:15 
AM 

10:00 
PM - 
09:30 
AM 

 

Duration 
of Sleep 
(hours) 

7.83 9.75 9.75 9.75 9.75 9.75 11.5 9.73 

Quality of 
Sleep 
(PSS)* 

3 1 2 1 2 2 5 2.29 

Sleep 
Times* 

10:30 
PM - 
7:45 
AM 

09:30 
PM - 
06:45 
AM 

09:30 
PM - 
06:45 
AM 

09:30 
PM - 
06:45 
AM 

10:30 
PM - 
08:30 
AM 

09:30 
PM - 
06:45 
AM 

10:45 
PM - 
10:00 
AM 

 

Duration 
of Sleep 
(hours)* 

9.25 9.25 9.25 9.25 10 9.25 11.25 9.64 
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Quality of 
Sleep 
(PSS)* 

1 3 5 3 4 5 5 3.71 

Sleep 
Times* 

11:05 
PM - 
08:10 
AM 

10:40 
PM - 
08:00 
AM 

09:10 
PM - 
08:30 
AM 

09:10 
PM - 
07:15 
AM 

09:10 
PM - 
07:15 
AM 

09:10 
PM - 
07:15 
AM 

09:10 
PM - 
07:15 
AM 

 

Duration 
of Sleep 
(hours)* 

9.08 9.33 11.33 10.08 10.08 10.08 10.08 10.01 

Summary of participant sleep data. Participants marked with an asterisk were excluded from analyses 
due to excessive data noise. 
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Table A2. 200 ms ERP Permutation Statistics 

Condition Site Time Range (ms) Cluster Mass p value 
intensity Cz 200-400 12.031 <0.004 
intensity F3 0-200 13.306 <0.004 
intensity F4 200-400 15.247 <0.004 
location Fz 400-600 6.779 <0.004 
location Cz 200-400 9.596 <0.004 
location C4 0-200 4.710 <0.004 
pitch Fz 0-200 9.801 <0.004 
pitch C3 0-200 8.327 <0.004 
pitch Cz 0-200 9.468 <0.004 
rhythm Fz 0-200 13.438 <0.004 
rhythm C3 400-600 5.848 <0.004 
rhythm Cz 200-400 9.728 <0.004 
rhythm F3 200-400 9.950 <0.004 
slide Fz 0-200 19.949 <0.004 
slide Cz 0-200 17.293 <0.004 
slide C4 0-200 17.375 <0.004 
timbre Fz 0-200 21.314 <0.004 
timbre C3 200-400 11.548 <0.004 
timbre Cz 0-200 21.094 <0.004 
timbre F4 0-200 8.608 <0.004 

Results of cluster permutation testing for all music conditions at all scalp sites across different time 
windows (0-200 ms, 200-400 ms, 400-600 ms, and 600-800 ms) comparing sleep groups (Sleep More 
vs. Sleep Less). 
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Table A3. Hemispheric Activity Comparison 

Sleep Group Electrode Pair t value p value 
less Frontal (F4 vs F3) 5.042 0.007 
less Central (C4 vs C3) -0.552 0.610 
more Frontal (F4 vs F3) 0.726 0.500 
more Central (C4 vs C3) -0.494 0.642 

  Results of t-tests comparing activation between homologous electrode pairs across 
hemispheres (left: F3 & C3; right: F4 & C4) within each sleep group. Positive t-
values reflect greater activity in the right hemisphere. 
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Figure B1. 64-Channel HydroCel Geodesic Sensor Net 

 

Figure 6. 64-Channel HydroCel Geodesic Sensor Net 

  
Electrode layout for the EEG sensor net used in the present study (Electrical Geodesics, Inc., 2007). Red 
circles indicate the six primary frontocentral sites (C3, C4, Cz, F3, F4, Fz) selected for statistical 
analysis. 
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Figure B2. Source Localization – Sleep More Group 

 
Figure 7. Source Localization – Sleep More Group 

  
Sagittal, coronal, 3D, and transverse MRI views (top left to bottom right) illustrating source-localized 
brain activity in the Sleep More group. 
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Figure B3. Source Localization – Sleep Less Group 

 
Figure 8. Source Localization – Sleep Less Group 

  
Sagittal, coronal, 3D, and transverse MRI views (top left to bottom right) illustrating source-localized 
brain activity in the Sleep Less group. 
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