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ABSTRACT

SLEEP’S IMPACT ON MUSIC PROCESSING IN THE DEVELOPING BRAIN

Rigel Leonard Baron

Sleep plays a crucial role in human development, particularly in early childhood.
While its influence on brain function is well documented, the relationship between sleep
and auditory processing in the developing brain remains underexplored. The present
study aimed to investigate how sleep duration impacts cortical responses to music,
focusing on children aged 5 to 10. Of the 14 children recruited, 11 (6 female, 5 male)
were included in the final analysis following EEG quality checks. Participants underwent
standardized assessments to confirm normal hearing, language ability, and intelligence.
Using a six-feature passive listening oddball paradigm, EEG data was recorded via a 64-
channel HydroCel Geodesic Sensor Net while children listened to the musical paradigm
and engaged in quiet activities. Event-related potentials (ERPs) were analyzed across six
music conditions: intensity, location, pitch, rhythm, slide, and timbre. Participants were
divided into two groups based on average sleep duration (more or less than 10 hours per
night). ERP data was evaluated using repeated measures ANOVA and cluster-based
permutation testing. Results revealed that children who slept more exhibited more
positive amplitude responses in all six conditions. Additionally, the study explored the
role of mismatch negativity (MMN), a pre-attentive auditory response, and found that
sleep-related differences in MMN were not significant, despite trends of MMN observed.

Hemispheric analysis indicated a greater right hemisphere dominance in children with



less sleep, while also displaying a greater sleep-related sensitivity to amplitude
attenuation in the left hemisphere. These findings contribute new insights into the impact
of sleep on auditory processing in children, suggesting that sleep may modulate brain
responses within hemispheres, with greater ERP implications for understanding sleep as a

confounding variable in cognitive studies and clinical research.
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INTRODUCTION

Evolution serves as the foundational mechanism through which all life on Earth
has developed, from single-celled prokaryotes that emerged over 3.4 billion years ago, to
the eventual rise of humans. Despite the complexity of this evolutionary timeline, it is
difficult to argue that the process has been anything but remarkably efficient, culminating
in species like Homo sapiens — biologically intricate and evolutionarily optimized. This
transformation reflects both idiosyncrasies and shared traits with our evolutionary
ancestors. Yet, even with extraordinary scientific advances, the purpose of many evolved
characteristics remains elusive. One such mystery is the function of sleep.

Sleep is a near-universal biological phenomenon, observed in organisms as simple
as fruit flies and jellyfish, all the way to humans (Nath et al., 2017; van Alphen et al.,
2021). Its evolutionary persistence, despite rendering individuals inactive and vulnerable
for extended periods, suggests it serves vital physiological functions. But how could a
feature that places its host in a coma-like state for hours on end — time that could be spent
hunting, forging, or defending oneself — survive the rigors of natural selection? Sleep, for
all its waste, consuming nearly 30 years of a human's life, must possess one, if not a
plethora of critical functions. This apparently high cost of sleep, laid against an
evolutionary backdrop, makes understanding its function particularly compelling.

While sleep affects the entire body, many of its most profound effects are
concentrated in the brain. Electroencephalography (EEG), a noninvasive and relatively
low-cost methodology, has become a cornerstone of sleep research (Al-Shama et al.,
2024; Lambert & Peter-Derex, 2023). EEG measures brain activation by capturing

electrical activity generated from neuronal firing via electrodes placed on the scalp.



While this technology is by no means new, dating back to 1924, the past several decades
have marked a notable adaptation in the way researchers use EEG to conduct research
and analyze datasets. The 1960’s marked another era of EEG adaptation with a
measurement known as an event-related potential (ERP), offering further insight in the
cortical function of the brain at a specific moment in time. ERP research typically
involves the presentation of a stimulus or event and subsequent measuring of the brain's
electrical response. Unfortunately, given the extreme electrical and mechanistic
complexity of the brain, especially when compared to a simple 64-electrode EEG, it is
difficult to isolate the signal (ERP, or response to the stimulus) from the noise (the
countless other processes the brain is engaged in at any given moment). To solve this,
computational statistics will average the brain's response to a specific stimulus over the
course of many trials, thus resulting in an ERP. This average, given a large enough
sample size, will eliminate a substantial proportion of the noise, leaving the data with a
pure ERP waveform, a temporal representation of the changing voltage in the brain.

The same way in which EEG research evolved to incorporate new techniques and
measurements, ERP research has cultivated its own nuances. Each wave that is generated
in response to a stimulus contains different components. These are typically divided into
N and P, representing negative and positive voltages, respectively. The negative and
positive waves are further subdivided by their respective time after stimulus presentation.
The P1 (also referred to as P50 in auditory EEG) wave is graphically represented by a
positive inflection, peaking between 40 and 75 milliseconds (ms) after the stimulus
presentation. The N1 (also referred to as N100) is graphically represented by a negative

deflection with a trough somewhere between 90 and 200 ms. Additional waves follow the



same format, with P2 and P3 waves among popularly studied components of ERP (Sur &
Sinha, 2009). The P1, N1, and P2 waves are often studied together and referred to as the
obligatory auditory response (or P1-N1-P2 complex), as these waveforms are consistently
and automatically produced by the brain and observed through EEG in response to
auditory stimuli (Nditdnen & Picton, 1987).

In its totality, analysis of ERPs is one of the most foundational techniques EEG
researchers use to study the human brain. Despite numerous variables that constrain the
spatial accuracy of EEG and ERP data, these techniques still offer excellent temporal
resolution and provide an objective methodology to garner a precise understanding of
how the brain responds to any variety of circumstances. Because of this, ERPs have
wide-ranging implications not only as a tool to better understand the brain, but also as a
valuable diagnostic measure (Landa et al., 2014). Since their discovery, ERPs have
attracted the attention of researchers across the world, leading to an abundance of
research, yet due to their cross-discipline and near universal nature, it is difficult to
imagine a future where ERP research reaches its terminus. One area of particular
curiosity concerns the overlap between sleep research and ERP. Existing adult data has
shown fairly conclusively that both sleep restriction and total sleep deprivation affect the
brain’s raw ERP responses to simple auditory stimuli. An early study conducted by
Morris et al. (1992) found significant attenuation of the P300 component (P3b) along
with an increase in P300 latency following periods of sleep deprivation in adults. Further
adult sleep deprivation research supported the earlier finding, confirming a decrease in

P300 amplitude coupled with a decrease in amplitude of N200. Interestingly, this same



study noted no change in the N100 component but saw an increase in amplitude of P200
(Lee et al., 2004).

Self-rated psychological scales used in parallel revealed a connection between
sleepiness and the decrease in amplitude of P300 and N200, while showing the increase
in P200 amplitude reflected characteristics of a negative mood, rather than sleepiness
(Lee et al., 2004). Total sleep deprivation has also been shown to attenuate ERP
amplitudes in response to visual stimuli (Corsi-Cabrera et al., 1999). These are important
findings because they demonstrate that sleep modulates sensory and cognitive brain
responses and suggests that researchers and clinicians alike may benefits from factoring
sleep into their studies as a confounding variable.

Despite the breadth of research concerning sleep and ERPs in adults, there is a
noticeable dearth of research investigating how sleep affects ERPs in children — an
avenue certainly worth exploring. Investigating ERPs in children offers unique insights
and perspectives that are largely unattainable in adult data. Childhood represents a critical
stage of brain development for auditory processing, characterized by clear structural and
neurophysiological distinctions from adults. These developmental differences suggest
that children may process stimuli differently than adults during EEG studies (Boen et al.,
2022; Manzi et al., 2011; Panizza et al., 2021). Exploring these divergences — or any
unexpected similarities — can offer new insights into the functional maturation of the
brain and enhance our understanding of cognitive development. Unfortunately, studying
sleep in children is not nearly as simple as studying sleep in adults. Rightfully so,
children should not undergo total sleep deprivation, nor extended sleep restriction in the

pursuit of research. However, these conditions are typically the means by which the



independent variable of sleep is manipulated in adults. Due to this, few studies have
examined ERP responses in children in relation to sleep. Among the limited literature,
existing data suggest that even minor disruptions in sleep can significantly affect
neurocognitive functioning, often reflected as reduced amplitude in ERP components —
particularly the P300 (Molfese et al., 2013). To build upon these preliminary findings, the
current study aims to evaluate whether sleep consistently attenuates ERP responses when
tested across a diverse and robust set of auditory stimuli.

In addition to general ERP components, one specific measure that has gained
considerable attention in sleep-related research is mismatch negativity (MMN). Given its
pre-attentive nature, MMN provides a unique opportunity to assess how sleep may
influence automatic auditory processing. MMN typically appears as a negative deflection
between 150 and 250 ms, elicited using an oddball paradigm. This type of response is
exogenous and pre-attentive, thus it can occur without the prerequisite of attention, and
does not require overt behavioral response (Néitinen et al., 2015). Importantly however,
MMN is a difference waveform and thus cannot be seen by a lone standard graph of an
ERP. Mathematically it is represented with the waveform generated by a deviant stimulus
minus its standard waveform analog and is typically visualized on its own separate graph.
As MMN measures the difference between the brain’s response to a standard versus a
deviant stimulus, it is therefore commonly referred to as an index of automatic change-
detection, however competing hypotheses attempt to tease apart its neural origins. The
model-adjustment hypothesis, for example, suggests MMN is elicited as the result of the
brain’s top-down formation of a sensory predictive model around the standard stimulus.

Consequently, if any following stimulus matches the preceding stimulus, the sound



undergoes repetition suppression, further reinforcing this top-down predictive model.
However, if a deviant stimulus is introduced, the predictive model is no longer
reinforced, and a more negative waveform is produced. An alternate explanation suggests
that MMN’s origin is much simpler. The adaptation hypothesis posits neurons of the
primary auditory cortex adapt to repeated exposure of standard stimuli, attenuating and
delaying the N1 ERP component. Once a deviant stimulus is introduced, it interrupts the
neuronal adaptation, triggering the neurons within the primary auditory cortex to “reset”,
displaying a greater N1 response to the deviant stimulus. This break in the neuronal
adaptation results in a deviant waveform that differs from the preceding response to a
standard, and again, MMN would be observed (Fitzgerald & Todd, 2020; Garrido et al.,
2009; Naitanen et al., 2007).

Due to the nature and mechanisms of auditory MMN, a better understanding
developed through research is critical to potentially uncovering insight into how different
facets of acoustics impact our brain. The field of MMN research is broad and young, and
many subfields are still in their infancy. To date, studies have shown MMN is often a
valuable ancillary diagnostic tool, serving as a biomarker and early indicator for
numerous cognitive pathologies including schizophrenia, autism spectrum disorder,
attention deficit/hyperactivity disorder, and neurodegenerative diseases (Donaldson et al.,
2023; Ford et al., 2022; Lindin et al., 2013). MMN has even gone so far as to serve as an
indicator of retained cognitive function in comatose patients, providing early notice of
potential recovery (Zhou et al., 2021). While MMN has been utilized diagnostically for
several decades, many of its important functions are still being uncovered, making

comprehensive research into its facets even more necessary.



Among these sparsely studied facets, lies sleep and its role in MMN. The existing
literature in this area is ambiguous at best, with some studies concluding that sleep
deprivation, in one form or another, results in an attenuation of MMN (Donaldson et al.,
2023; Ford et al., 2022; Lindin et al., 2013; Zhou et al., 2021). Meanwhile, other studies
offer an antithetical conclusion that sleep deprivation has no significant impact on MMN
(Bortoletto et al., 2011; Gosselin et al., 2006; Muller-Gass & Campbell, 2019; Salmi et
al., 2005). This inconsistency highlights a critical gap in our understanding of sleep’s role
in the brain, particularly in children, and underscores the potential of MMN as a tool for
assessing the relationship between sleep and brain development. Just as with sleep’s
influence on raw ERP components, understanding its role in the developing brain holds
significant potential. Given that MMN reflects the brain’s ability to form and maintain a
sensory memory trace, investigating how sleep influences MMN offers important insight
into how sleep may affect neural mechanisms of sensory memory, pattern learning, and
change detection. Understanding this relationship could help clarify the broader role of
sleep in supporting cognitive functions during critical periods of brain development.

Due to MMN’s reliance on standard and deviant stimuli, the foremost
methodology to elicit an auditory MMN response is through application of an oddball
paradigm (Garrido et al., 2009). Oddball paradigms are typically sequences of tones
where one stimulus, the standard, is played repeatedly, while a deviant stimulus is
interjected into the sequence with the goal of producing tell-tale MMN activity. Existing
data is most often derived from pure-tone oddball paradigms, in which the deviant
stimulus only alters in pitch. Several sleep studies examine deviations in duration rather

than frequency; however, few, if any, use a robust framework of deviant sounds. This is



the advantage of music. Music allows researchers to create oddball paradigms that
deviate in a range of variables, not only pitch or duration. Beyond this, music has two
additional advantages. One, especially in children, it is much easier to obtain greater
quantities of data — most people, let alone young children, are not particularly keen on
listening to repetitive tones for long durations, regardless of the task given to distract
them. Music solves this, as children are more willing to listen to music for longer periods
of time, allowing for the collection of greater volumes of data, without risking agitating
the child; a risk that carries the potential for a decrease in EEG signal-to-noise ratio with
an accompanying increase in undesirable EEG artifacts (DiStefano et al., 2019). Beyond
their numerous advantages, musical paradigms offer the distinct benefit of functioning as
a universal medium, facilitating the assessment of children across diverse linguistic
backgrounds. Finally, music provides greater ecological validity than pure-tone or single-
deviant paradigms, as it better represents the diversity and complexity of sounds
experienced in everyday life. More broadly, music — and specifically, the oddball
paradigm used in this study — incorporates a range of acoustic modifications while
presenting stimuli in a structured musical arrangement, making it more reflective of
natural sound processing, which may yield data that more closely represents typical brain
activity (Kliuchko et al., 2016).

Music processing is primarily associated with the right hemisphere of the brain,
which is more actively engaged when listening to music, though the left hemisphere also
plays a role (Evers et al., 1999; Kimura, 1964). Despite existing knowledge, research
remains inconclusive regarding the influence of sleep on music processing across

hemispheres. In one study, researchers analyzed both music and language processing



using psychoacoustic behavioral tests: participants were asked to discriminate between
monoaurally presented melodies for music processing, and to identify monoaurally
presented words that were filtered to distort their acoustic features for word processing.
In both tasks, participant accuracy served as the primary outcome measure. The study
found that sleep deprivation impaired word processing presented to the left ear and music
processing presented to the right ear. Due to the brain's contralateral connections between
the ears and hemispheres, word processing — primarily a left-hemisphere function — was
disrupted on the right side of the brain, while music processing, which is predominantly
right-hemispheric, was more impaired on the left. This suggests an inverse relationship
between the hemisphere experiencing most activation and the hemisphere that
experiences the most attenuation caused by insufficient sleep. Simply put, if a task is left
hemisphere dominant, the right hemisphere’s activity would be dampened. This study
also examined neurophysiological measures, noting a significant increase in P300 and
MMN latency in an experimentally sleep deprived group, however it noted no significant
amplitude attenuation in either condition. While these are insightful findings, the study
only observed the relationship between hemispheric involvement by means of a
participant’s behavioral measures and did not directly compare neurophysiological data
between the left and right hemispheres (Diaz-Leines et al., 2017). Additional studies
complicate the previous findings by presenting conflicting data. These studies show that
spatial working memory, which is primarily a right-brain function, was more diminished
in the right hemisphere than in the left. As a result, brain activity became more
symmetrical, as opposed to the asymmetry suggested in the Diaz-Leines data (Peng et al.,

2020). This notion that the brain's dominant region experiences greater activity reduction



than its non-dominant region is also supported by behavioral data. A 2004 study found
that the right hemisphere showed greater impairment when recalling and identifying
emotional facial expressions — a task typically dominated by the right hemisphere in
healthy individuals. (Pallesen et al., 2004). Overall, existing data remains inconclusive
about how sleep affects activity levels in each hemisphere of the brain. One possible
explanation for the conflicting results is a regional task-based hypothesis, which suggests
that sleep’s impact on hemispheric activity modulation is not governed by a single rule
that can be reduced to the hemispheres involved. Instead, its effects vary depending on
the specific task being performed and the corresponding brain regions or networks
involved. Building on this idea, the current study aims to gather additional regional and
hemispheric data while investigating the underlying mechanisms of hemispheric activity
through the analysis of detailed neurophysiological music data in children.

Ultimately, despite prior electrophysiological research on sleep’s role in the brain,
significant gaps persist, particularly in our understanding of sleep’s impact on the
developing brain. The present study aims to address these gaps by utilizing
electroencephalography and a unique musical paradigm to examine three distinct yet
interconnected measures of neurophysiological function. First, it investigates sleep’s
effect on ERPs. While existing research in adults suggests that insufficient sleep
generally attenuates ERP amplitudes, data on how this phenomenon affects children
remains limited. Second, the study explores the role of sleep in modulating MMN, a
measure with inconclusive findings in adults and no existing data in children. Lastly, this
study examines how sleep influences neural activity in the left versus right hemispheres.

Current findings in this area remain inconsistent, presenting multiple hypotheses

10



regarding how varying levels of sleep impacts potential differences in hemispheric
modulation. Together, this study seeks to provide a novel perspective on sleep’s role in
the developing brain by integrating rarely studied electrophysiological data in children
with a musical paradigm to observe changes in cortical activity. The present findings may
provide valuable diagnostic insights for considering sleep as a confounding variable in
clinical settings while also contributing to a broader understanding of sleep’s impact on

brain function.
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METHODS
Participants

EEG data were collected from 14 children, aged 5 to 10 years, each of whom
listened to a multifeature passive listening oddball paradigm once, yielding a total of 14
datasets. Data from three participants were excluded due to excessive noise in the EEG
recordings following post-processing, resulting in a final sample of 11 participants for
analysis.

Sleep data was collected for each participant covering the seven nights prior to
and including the night before EEG testing. On the day of testing, participants were asked
to estimate their nightly sleep duration by reporting estimated bedtimes and waketimes.
Parental input was used in all cases to verify bedtime and waketime estimates. These
reports were averaged across the seven nights to calculate each child’s mean nightly sleep
duration. Based on a median value of approximately 10 hours per night, participants were
divided into two groups: those averaging more than 10 hours per night (Sleep More) and
those averaging less (Sleep Less). These groups were used for all statistical comparisons
(Table Al; Appendix A).

Additionally, children completed a qualitative assessment using the Pictorial
Sleepiness Scale (PSS; Maldonado et al., 2004), a visual tool designed to assess
subjective sleepiness in young children, similar in purpose to the Karolinska and Stanford
Sleepiness Scales (Akerstedt & Gillberg, 1990; Hoddes et al., 1973). Older children
(closer to age 10) were generally able to report their sleep habits and PSS ratings

independently, while younger participants often required parental assistance. Although
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the qualitative sleepiness ratings were not included in the statistical analysis, they present
a potential avenue for future exploration.

Of the 11 children whose data was included in the final analysis, six were female
and five were male. Several additional metrics were gathered on the participating
children to control for potential confounds. To ensure children fell within normal ranges
for hearing, language, and intelligence, all children were given an intelligence test
(TONI-4; Brown et al., 2010), an English language test (PPVT-5; Dunn et al., 2019), and
hearing test at the time of their participation. Also, the parents/guardians were asked
whether their child spoke additional languages. If the child was able to speak more than
one language, they were given language tests to assess their proficiency in the additional
languages. Parents/guardians completed a questionnaire regarding the child’s musical
background. The study was approved by the human subject research institutional review
board at St. John’s University, New York, and was conducted in compliance with the
Declaration of Helsinki. Parental consent was obtained from the parent/legal guardian(s)
for each participant.

Oddball Paradigm

The present multifeature mismatch negativity oddball paradigm was adapted as a
hybrid of the designs described by Vuust et al. (2011) and Kliuchko et al. (2016), while
retaining the acoustic modifications originally employed in the Vuust et al. paradigm.
The paradigm itself consists of a piano composition arranged in an Alberti bass sequence,
based on a Western arpeggio chord progression, with notes arranged in groups of four,
where the third note in every other sequence of four serves as a deviant. To introduce

musical variability, the key was changed every sixth measure to one of 12 major or 12
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minor keys, allowing each of the six total deviants to be presented once per measure and
key. Keys were pseudorandomized such that no key was repeated until all 24 had been
cycled through. To maintain consistency, keys were centered around C4, with bass notes
ranging between F3 and E4. The presentation of deviants throughout the paradigm was
also pseudo-randomized and deviants were altered from their standard counterparts in
one of six acoustical modifications: pitch, timbre, location, intensity, slide, or rhythm
(Figure 1). Each note, or stimulus, lasts 200 ms with 5 ms allotted for fading in and out at
the beginning and end of the note with an interstimulus interval of 5 ms. The experiment

paradigm was presented to each participant on a single day for 14 minutes.

Figure 1. Auditory Oddball Paradigm

o 4 o 4 o o o o 4 > o>
)y 4. e . . 1 1
Z Jeg | | | | | |
x| 1 1 1 1 1
Di D2 D3 Ds Ds Des

Keys (randomized): F-major Ab-minor  D-minor.....
D1: Pitch-deviant: 24 cents lower
D2: Timbre-deviant: filtered, having an ‘old time radio’ effect
D3: Location-deviant: slightly shifted to the left
D4: Intensity-deviant: 6 dB reduction
Ds: Slide-deviant: sliding up from a whole note below
D6: Rhythm-deviant: 30 ms earlier

Present auditory oddball paradigm comprising repeating four-note sequences, with the third
note in alternate sets designated as a deviant stimulus (modified from Vuust et al., 2011).

EEG Acquisition & Experimental Procedure
Prior to EEG setup, head circumference was measured to determine appropriate

net size. Each participant was then fitted with a 64-channel HydroCel Geodesic Sensor
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Net (Electrical Geodesics, Inc., 2007), with Cz serving as the reference electrode. Six
frontocentral sites (Appendix C; C3, C4, Cz, F3, F4, and Fz) were selected for MMN
analysis (Hao Hsieh et al., 2018; Kliuchko et al., 2016; Shafer et al., 2010) (Figure B1;
Appendix B). Electrode impedances were kept below 10 kQ. EEG was recorded at a
1000 Hz sampling rate with an online bandpass filter of 0.1-100 Hz. Participants were
then seated in a sound-attenuated, electromagnetically shielded booth, where electrode
connectivity across all 64 channels was verified. Once setup was complete, the booth
doors were closed, and participants began the auditory oddball paradigm. Each
participant was exposed to 144 deviant trials for each of the six acoustic conditions —
pitch, timbre, location, intensity, slide, and rhythm — resulting in a total of 864 deviant
trials per participant. For data analysis, 432 standard trials were associated with each
deviant category, based on a 3:1 standard-to-deviant ratio, yielding a total of 2,592
standard trials. During EEG recording, children were allowed to engage in quiet activities
of their choice (e.g., drawing, tablet-based games) to remain calm and reduce movement
artifacts. Seating arrangements were individualized: some children sat alone, others with
a parent or researcher. Researchers remained in the booth for participants who required
support due to restlessness or attentional difficulties, in order to minimize EEG noise.
Data Preprocessing

Initial preprocessing and segmentation were performed using NetStation software
(Electrical Geodesics, Inc.). For offline processing, EEG data were band-pass filtered
between 0.1 and 30 Hz using a finite impulse response (FIR) filter. The FIR filter has a
linear phase response, ensuring accurate preservation of signal timing and waveform

shape. The high pass and low pass filter were justified given the limited distortion to
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individual data and the concentration of MMN energy in the 2 to 5 Hz frequency bands
(Picton et al., 2000; Rousselet, 2012). Following this, data were exported to BESA (Brain
Electrical Source Analyses) Research 7.1 (BESA GmbH, Germany) for artifact correction
and averaging. Ocular artifacts (e.g., blinks) were automatically removed using BESA’s
standard averaging algorithm, followed by manual inspection to remove excessively
noisy channels. During offline processing in BESA, zero-phase filters were applied: a
high-pass filter at 0.3 Hz (12 dB/octave slope) and a low-pass filter at 20 Hz (24
dB/octave slope). EEG data were segmented into -200 ms to 1500 ms epochs and time-
locked to the onset of the first stimulus in each four-note sequence. Noisy channels were
interpolated with BESA spline interpolation using data from neighboring electrodes, with

total interpolations kept under 15% to ensure data quality.
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DATA ANALYSIS AND RESULTS
Event Related Potentials

Prior to the statistical tests, data was segmented. Given the high sampling rate of
1000 Hz, the data was time averaged into 20 ms bins to reduce data volume and number
of comparisons. Since the musical paradigm was arranged in an Alberti bass pattern
where four notes were played per trial, the data was then partitioned into four note epochs
to fit this sequence. To do this the data was further truncated to include a range of 0 ms to
980 ms as 0 ms marked the onset of the first stimulus, 205 ms the second stimulus, 410
the third stimulus, and 615 the fourth stimulus so the range of 0 ms to 980 ms included a
full view of the ERP responses to each stimulus without including extraneous pre-
stimulus data. The data was further binned into categories to include amplitude (as
measured in microvolts) for each participant, in each music condition (i.e.: intensity,
rhythm, pitch, slide, timbre, and location), and at each of the six scalp sites used for data
analysis (i.e.: C3, C4, Cz, F3, F4, Fz).

Following data rearrangement, repeated measures Analysis of Variance
(ANOVA) was used to identify pattern deviance across the main effects of sleep group
(Sleep More versus Sleep Less), electrode site, and music condition, as well as the
interactions between sleep and site, sleep and condition, site and condition, and the three-
way interaction among sleep, site, and condition, on ERP amplitude responses. This was
done to determine whether sleep, electrode selection, or music condition independently or
interactively influenced ERP amplitudes. Follow-up repeated measures two-way
ANOVAs were conducted separately for each music condition for the purpose of

evaluating the effects of sleep group, electrode site, and their interaction for each music
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condition. This allowed for more targeted analysis of how sleep-related differences might
vary depending on the type of musical deviance. To complement these analyses, cluster-
based permutation testing was performed to assess sleep group differences in ERP
amplitude across multiple time windows (0-200 ms, 200-400 ms, 400-600 ms, and 600-
800 ms). This approach was used to control for multiple comparisons across time and
space and to identify temporally and spatially connected clusters where sleep group
differences were statistically robust.

Step 1: Three-way Repeated Measures ANOV A The first step in the data analysis
procedure involved examining whether sleep quantity influenced EEG amplitudes across
scalp sites and music conditions using a repeated measures factorial three-way ANOVA.
In this test, sleep group was treated as a between-subjects factor, based on each
participant’s average nightly sleep duration during the week preceding testing.
Participants who averaged more than 10 hours of sleep per night were placed into the
"Sleep More" group, while those who averaged less than 10 hours per night were placed
into the "Sleep Less" group. Electrode site (C3, C4, Cz, F3, F4, Fz) and music condition
(pitch, timbre, location, intensity, slide, and rhythm) were treated as within-subjects
factors, as each participant contributed data across all sites and conditions. The analysis
was conducted with trial-level EEG amplitude data, averaged across all time points using
RStudio utilizing the RVAideMemoire package. Results revealed a significant main
effect of sleep group (p < 0.001), as well as significant interactions between sleep and site
(p <0.001), sleep and condition (p < 0.001), and a three-way interaction among sleep,
site, and condition (p < 0.001). These findings suggest that the influence of sleep on EEG

amplitudes varies depending on both the electrode location and the type of musical
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deviance in a given epoch. Follow-up analyses were performed to further explore the
nature of these interactions.

Step 2: Two-way Repeated Measures ANOVA The second step narrowed the
comparisons down to a two-way ANOVA, again comparing the difference that may exist
between the two sleep groups (participants who averaged more than 10 hours of sleep per
night were placed into the "Sleep More" group, while those who averaged less than 10
hours per night were placed into the "Sleep Less" group), however this time comparing
average amplitudes across time for sleep and site within each music condition. Due to the
increased number of ANOV As performed (one for each music condition) a False
Discovery Rate (FDR) correction was applied to the p values to reduce the Family-Wise
Error Rate (FWER) — the probability of making one or more Type I errors (false
positives) — induced by multiple comparisons. FDR was selected over similar correction
methodologies such as a Bonferroni correction due to the low number of comparisons
and overly conservative nature of Bonferroni — often increasing Type II errors (false
negatives). Following this, p values for sleep x site interactions in all music conditions
showed significance (p < 0.001), while sleep’s individual impact on all six music
conditions also showed significance (timbre: p < 0.0241, intensity: p < 0.001, location: p
<0.001, thythm: p <0.001, slide: p <0.001, pitch: p < 0.0174). The significance detected
within this step provided a statistical justification for a third step within the model.

Step 3: Time Window Permutation Testing To analyze the effect sleep may play on
ERPs in different time periods, data was segmented into 200 ms time bins, corresponding
roughly to the onset of each stimulus (0-200 ms, 200-400 ms, 400-600 ms, and 600-800

ms). Subsequently, cluster-based permutation statistics were performed between sleep
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groups (Sleep More versus Sleep Less) for all data sites and music conditions on all 200
ms time bins (250 permutations). Cluster permutation testing was employed in this
context to control the FWER and address the issue of multiple comparisons. This
approach offers several advantages over traditional correction methods such as FDR and
Bonferroni, enhancing statistical power while accounting for the spatial and temporal
dependencies inherent in the data (Maris & Oostenveld, 2007). This analysis revealed
statistically significant clusters in all six music conditions. Intensity and location
displayed significant clusters in the earlier time windows (0-400 ms) across a variety of
sites but showed no consistently significant effect at a single set of sites across time
windows. Pitch showed significant clusters in the earliest time bin (0-200 ms) at C3, Cz,
and Fz. Rhythm showed significance across a range of time bins and sites. Slide and
timbre showed the strongest significance with larger clusters across multiple sites and
time bins, specifically within the 0-400 ms window (Table A2; Appendix A).
Mismatch Negativity
Peak Based Analysis A multi-tiered statistical framework was utilized to analyze MMN
between sleep groups to determine if overall significance existed between MMN in the
Sleep Less and Sleep More groups, with follow-on cluster-based permutation t-tests to
determine how specifically MMN was represented at its canonical site, Fz. MMN was
defined as the difference between the third stimulus (deviant) and second stimulus
(standard) and calculated using the formula:

MMN = Amplitudegeyiant (400-600 ms) — Amplitudesianaara (200-400 ms)
Peak analysis was performed mirroring the methodology from Vuust et al. (2011), using

the mean MMN amplitude within a 40 ms window centered on the grand-average MMN
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peak latency. No significant group differences were observed across the overall average

(p =0.91, Figure 2) or within individual music conditions (all p > 0.25, Figure 3).

MMN Amplitude (uV)

Figure 2. Overall Mean MMN Amplitude

0.0

Sleep Less Sleep More

MMN amplitude values averaged across all sites and all conditions for both sleep
groups. MMN calculated by averaging the 40 ms window surrounding the peak
MMN value Error bars represent the variability within each group.
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Figure 3. Mean MMN Amplitude by Condition

0.00
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-0.50

-0.75 ¢

MMN Amplitude (uV)

-1.50

MMN amplitude values for each music condition, calculated by averaging the 40 ms window
surrounding the peak MMN value. The analysis includes data from all sites, averaged across the six

music conditions, and compared between the two sleep groups. Error bars represent the variability
within each group.

Cluster-Based Permutation Testing To complement the peak-based analysis, additional
cluster-based premutation t-tests were used to determine whether there were any specific
windows of time where sleep shows significance within the greater 200 ms bin of MMN.
This analysis was performed only at the Fz site for all six music conditions. A cluster-
forming threshold of p < 0.05 was used, and 250 permutations were run to estimate null
distributions. This analysis remained mostly consistent with peak analysis, showing only
one window of significance between groups in the location condition 160-180 ms post
stimulus onset with a statistically stronger (more negative) amplitude revealed in the
Sleep More group. Additionally, visually in slide, rhythm, pitch, and timbre the Sleep
More group had stronger amplitudes, however this distinction did not survive the

significance threshold posed by the cluster-based permutation testing (Figure 4).
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Figure 4. Difference Waveforms for Fz Electrode
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Difference waveforms obtained by subtracting the standard stimulus from the deviant stimulus at electrode
Fz for each music condition, comparing both sleep groups. The grey area in the location graph highlights
the region of significance identified during the permutation statistical analysis.

Hemispheric Analysis

Paired t-Tests Finally, to assess hemispheric differences and the potential influence of
sleep on these differences, analyses of raw EEG amplitude responses averaged across
time and averaged across all music conditions were restricted to lateral electrodes only,
excluding midline sites (Cz and Fz) from the original set of six (C3, C4, Cz, F3, F4, Fz).
The resulting lateral electrodes were used for hemispheric analysis, with C3 and F3
representing the left hemisphere, and C4 and F4 representing the right. These
homologous electrode pairs (C3, F3; C4, F4) were then compared using paired t-tests.
Analyses were separated based on the participant’s sleep group to determine how sleep
quantity may impact hemispheric asymmetries. The resulting analysis showed a
statistically significant right hemisphere dominance at frontal sites (t = 5.04, p = 0.007)

for the sleep less group. Although additional comparisons did not reach statistical
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significance, the t-statistics suggest a trend toward right-hemisphere dominance at frontal
sites and left-hemisphere dominance at central sites (Table A3; Appendix A).
Modulation Index To quantify the effect of sleep within each hemisphere, a normalized
metric — the Modulation Index (MI) — was computed using raw EEG amplitude responses
averaged across time and averaged across all music conditions at the lateral electrode
pairs (C3, F3; C4, F4). The MI reflects the relative amplitude difference between the
Sleep Less and Sleep More groups, allowing comparison of how strongly sleep
modulates activity in the left versus right hemisphere. MI is calculated through the

formula:

_ Sleep Less — Sleep More

" Sleep Less + Sleep More
Here, Sleep Less refers to the average amplitude across all times and music conditions for
all participants within that group, while Sleep More represents the corresponding average
for its group. The grand average MI across both hemispheres was -0.37, indicating that
participants in the Sleep More group exhibited higher amplitudes across all conditions
and lateral electrode sites —consistent with findings from the repeated measures ANOVA.
Hemisphere-specific analyses revealed an MI of -0.49 in the left hemisphere and -0.26 in
the right, suggesting that sleep may exert a stronger modulatory influence on neural
activity in the left hemisphere (Figure 5). A permutation test (10,000 iterations) was
performed on the indices, revealing a significant difference between the MI of the left

and right hemispheres (p < 0.001).
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Figure S. Hemispheric Comparison of Brain Activity
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This figure represents the average amplitude recorded across all scalp sites and music conditions. This
figure compares mean amplitudes between both sleep groups in the left and right hemispheres. The
indicated regions display what the calculation of modulation index represents: the relative differences
between sleep conditions in the left and right hemispheres.

Source Analysis To explore hemispheric trends in brain activity, source localization was
performed using BESA’s integrated source analysis software. The analysis was intended
to visualize general patterns of hemispheric activation, rather than to provide statistical
evidence for lateralization related to music processing or sleep. Two grand average files
were created — one for the Sleep Less group and one for the Sleep More group —
incorporating data from all music conditions across all 64 scalp sites. To streamline
processing, the time window was limited to 0-800 ms, which captured the most
prominent neural responses. The resulting data was analyzed using Classical LORETA
(Low Resolution Electromagnetic Tomography) Analysis Recursively Applied (CLARA)

(Figures B2 & B3; Appendix B).
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DISCUSSION

The present study aimed to elucidate the role of sleep in the developing brain by
examining electrophysiological responses to a music-based paradigm in children.
Specifically, it investigated (1) sleep’s general effect on ERP amplitude, (2) its influence
on MMN responses, and (3) the hemispheric implications of sleep quantity on brain
function. A statistical approach was employed to address each of these components,
offering both a framework for interpreting the current findings and a roadmap for future
inquiry. While the study adds valuable child-specific data to an area of research largely
centered on adults, the results must be interpreted with caution due to limitations such as
small sample size and the observational nature of the study’s approach to sleep. To fully
unpack the significance and implications of the findings, each core domain is discussed
individually, followed by a synthesis of how these elements converge to inform our
broader understanding of sleep and auditory processing in the developing brain.
Event Related Potentials
The present findings align with prior research demonstrating that sleep loss attenuates
ERP responses. This effect has been well-documented in adults and, to a very limited
extent, in children (Molfese et al., 2013; Morris et al., 1992). The current study extends
these findings by confirming that sleep significantly impacts ERP amplitudes in children,
supporting the notion that sleep modulates auditory processing. Importantly, this
attenuation was observed across all six musical deviant conditions, indicating that the
effect of sleep is robust and not limited to a specific type of auditory manipulation. The
relatively weaker sleep-related effects observed for location deviants may be partially

explained by the method of stimulus delivery. In the present study, location changes were
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presented through external speakers rather than isolated earphones. This setup may
naturally blur the differences heard between the ears due to overlapping acoustic
information. This may have reduced the salience of spatial differences, making neural
responses to location deviants weaker overall and less sensitive to sleep-related
modulation. The relatively weaker sleep-related difference in pitch and intensity deviants
may be explained by the basic sensory processing mechanisms engaged during audition
of these deviants, features that may be comparatively resilient to moderate sleep
disruption. Pitch discrimination, for example, largely engages the early auditory cortex
with limited reliance on higher-order integration. Intensity detection, being a low-level
sensory function is also typically robust against attentional fluctuations or cognitive
fatigue (Nédtdnen & Picton, 1987). In contrast, auditory features requiring more complex
temporal or spectral integration - such as timbre and slide - may be more cortically
taxing, thus exhibiting stronger susceptibility to the effects of reduced sleep (Tervaniemi
et al., 1994). While the primary focus of the raw ERP analysis was not on individual
deviant types, the broad impact across conditions suggests that reduced sleep generally
dampens cortical responsiveness to auditory inputs. Permutation-based statistical analysis
further validated these effects, revealing significant clusters predominantly in early time
windows — prior to the deviant note — regardless of condition. This pattern is expected as
notes played prior to the deviant would be unaffected by the upcoming deviant condition.
The relative absence of significance in the 400-600 ms window, when the deviant notes
typically occurred, supports the MMN results and suggests that sleep-related differences
may manifest as more salient in general auditory processing. Given that the deviant

musical feature occurs at approximately 400 ms, significant clusters detected in the 0-200
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ms and 200-400 ms windows likely represent baseline auditory processing differences
rather than direct effects of the deviant feature. Thus, despite the logical explanation for
why acoustical modifications such as timbre and slide may be more affected by sleep
group, early significant effects should be interpreted cautiously, as they more likely
reflect sleep-related modulation of general auditory responsiveness rather than acoustic
feature deviance detection. Although specific ERP components were not isolated in this
waveform analysis, the observed patterns reinforce trends seen in adult data and
contribute novel insight to the limited literature on sleep and auditory ERPs in children.
Notably, the large number of trials per condition strengthens the reliability of these
findings within subjects, however the study’s small sample size may have led to
unwanted between subject variance and leaves room for future research to shore up such
gaps.
Mismatch Negativity

Existing literature presents conflicting findings regarding the influence of sleep
manipulation on MMN, with some studies supporting a measurable effect (Donaldson et
al., 2023; Ford et al., 2022; Lindin et al., 2013; Zhou et al., 2021) and others finding none
(Bortoletto et al., 2011; Gosselin et al., 2006; Muller-Gass & Campbell, 2019; Salmi et
al., 2005). Against this backdrop, the present study examined whether sleep quantity
affects MMN responses to various deviant musical conditions in children. The use of a
musical paradigm and a younger population represents a novel contribution to the MMN
literature. However, statistical analysis did not reveal a significant relationship between
sleep quantity and MMN amplitude across conditions. While permutation testing

identified a single significant cluster — a 20 ms region within one of six musical
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conditions — this isolated result does not provide strong evidence to reject the null
hypothesis. Thus, the data do not offer conclusive support for the hypothesis that sleep
quantity significant impacts MMN responses in children.

Despite the lack of statistical significance, visual inspection of waveforms
suggests consistent differences in MMN responses between children who slept more and
those who slept less in nearly all conditions. These apparent trends raise the possibility
that real effects were present but obscured by methodological constraints. Notably, the
study did not include an experimental manipulation of sleep, relying instead on
naturalistic group assignment. Additionally, the sample size may have been insufficient
to detect subtle group differences, especially given the known variability in EEG
responses among children (Callaway & Halliday, 1973). These limitations highlight the
potential for underpowered results and underscore the importance of replication using
larger samples and controlled sleep conditions. Such approaches could reduce individual
variability and enhance sensitivity to detect true group effects.

Taken together, these findings suggest caution in drawing definitive conclusions
about the relationship between sleep quantity and MMN responses in children.
Nevertheless, the resulting conclusion is that MMN is relatively unaffected by sleep
deprivation. This aligns with MMN’s role as a pre-attentive auditory mechanism — one
that operates automatically and independently of higher-order cognitive processes such as
attention and perception, which are themselves more susceptible to the effects of sleep
loss (Chua et al., 2017; Liberalesso et al., 2012). If confirmed, this would imply that
MMN may be a stable neurophysiological marker for children, even in the context of

mild sleep deprivation. Despite this, until a concrete conclusion is reached regarding
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sleep’s role on MMN, it may behoove researchers and clinicians to consider lack of sleep
as a potential confounding variable in MMN research, particularly in pediatric
populations.
Hemispheric Effects

The hemispheric results of music processing in the present study, support existing
findings suggesting a general, though subtle, lateralization toward the right hemisphere
during music processing (Evers et al., 1999; Kimura, 1964). Interestingly, when
examining average EEG amplitudes across time and music conditions between
homologous electrode pairs (left hemisphere: C3, F3; right hemisphere: C4, F4) within
each sleep group, a statistically significant right-hemispheric dominance emerged at
frontal sites in the Sleep Less group — indicating higher EEG amplitudes in this region.
No other sleep-related hemispheric asymmetries were statistically significant. At first
glance, this may appear to contradict the broader ERP findings showing attenuated
amplitudes in participants with less sleep. However, follow-up analysis using a
Modulation Index (MI) provided clarity: MI results revealed a greater modulatory effect
of sleep in the left hemisphere, suggesting that the left hemisphere is more sensitive to
sleep-related attenuation. This discrepancy suggests that the right hemisphere’s increased
activity in the sleep less group may reflect a relative preservation of function, rather than
an increase in resource allocation. In contrast, the left hemisphere showed a greater
amplitude reduction, which may be driving the overall decrease in ERP amplitude
observed in the sleep less group. This hemispheric asymmetry may be explained by the
brain’s reliance on the right hemisphere during music processing, potentially making it

more resilient to the effects of sleep loss. In this task-specific context, the right
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hemisphere may be preserved to support key auditory processes, while the left
hemisphere — less central to this task — may experience the greater impact of less sleep.
This interpretation is consistent with the stable MMN responses observed in the sleep less
group, suggesting that sleep loss does not necessarily impair essential auditory
discrimination functions. Based on this modulatory hypothesis and MMN’s relative
resilience to sleep related deficits, future research could investigate whether functions or
regions adjacent to MMN in space or time are impaired by sleep loss — potentially
revealing what, if any, neural processes are “sacrificed” to preserve MMN’s integrity.
Overall, in relation to the hemispheric effects of sleep on music processing in the
developing brain, the observed asymmetry may reflect a reallocation of
neurophysiological resources to support task-relevant regions, or an intrinsic vulnerability
of the left hemisphere to sleep loss in this context.

Understanding how these findings fit within the broader literature is critical. The
results of this hemispheric analysis generally align with prior research, and where they do
diverge, they highlight variability in how sleep affects neural processing across different
tasks and populations. The broader ERP waveforms analyzed here suggest a consistent
pattern in the context of music processing, a greater contralateral attenuation under
conditions of reduced sleep. That is, when the brain is processing music — a task with
right hemispheric bias — the less involved hemisphere, in this case the left hemisphere,
experiences attenuation (Diaz-Leines et al., 2017). This raises important questions as to
why other cognitive tasks might show the opposite effect, an ipsilateral attenuation under
similar sleep conditions (Peng et al., 2020). One possibility is that sleep interacts

differently with specific cortical regions depending on the functional demands of the task.
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Future research should move beyond broad hemispheric comparisons to examine regional
dynamics in greater detail. Just as whole-scalp ERP averages can obscure critical
differences, whole-hemisphere analyses may fail to capture the fine-grained effects of
sleep on neural function. A region-specific approach may be key to advancing our
understanding of how sleep loss alters the brain’s ability to process complex stimuli such

as music.
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CONCLUSION

Overall, the present study contributes to the growing body of literature
emphasizing the importance of sleep in auditory processing, extending existing adult
research into younger populations (Colrain & Campbell, 2007). While the long-term
developmental consequences of reduced sleep remain uncertain, these findings reinforce
the critical role of sleep in supporting healthy neurophysiological function. The observed
broad attenuation of ERP amplitudes across scalp sites and musical conditions in children
who slept less suggests a general reduction in neural responsiveness. Although this
attenuation is not inherently pathological, prior research has associated similar patterns of
reduced ERP amplitude with various clinical conditions, including substance use, ADHD,
antisocial behavior, and depression (Hosch et al., 2023; Patrick et al., 2006; Peisch et al.,
2021; Whalen et al., 2020). While the current findings do not imply a causal link between
sleep patterns and psychopathology, they highlight shared neurophysiological features
that warrant further investigation.

These findings should be interpreted within the context of several limitations.
Although the musical paradigm enabled many trials per participant, the overall
participant sample size remains a limiting factor for generalizability. Moreover, the
observational design of the study — while ecologically valid — may have blunted the
effects of sleeping less when compared to controlled sleep manipulation studies.
Nevertheless, this naturalistic approach offers unique insights into how typical sleep
patterns impact cortical function in everyday contexts. Future studies aiming to explore
sleep-related effects on neural processing should consider combining observational and

experimental methods to balance ecological validity with causal inference. As noted in
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the present study, increasing participant sample sizes is especially important in such
designs.

In summary, the current research underscores the importance of considering sleep
as a potential confounding variable in child EEG studies. Even while MMN did not
exhibit clear sleep-related differences, overall ERP amplitudes appear sensitive to natural
variations in sleep quantity. Furthermore, the study introduces new perspectives on
hemispheric effects in music processing and suggests opening the door to more regionally
specific investigations into how sleep influences task-dependent neural responses.
Ultimately, this study represents but a single drop in the expanding river of sleep and
ERP research — yet it contributes to the current that is steadily flowing into a vast ocean
of potential knowledge, deepening our understanding of sleep’s role in brain function,

development, and the neurophysiological mechanisms underlying human cognition.
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APPENDICES

Table Al. Participant Sleep Data

Sleep Test T™D-1 TD-2 TD-3 TD-4 TD-5 TD-6 Average
Metric Day
*Quality 1 1 1 2 2 3 1 1.57
of Sleep
(PSS)
*Sleep 07:00 09:00  09:00 09:00 09:00 09:00 09:00
Times PM - PM - PM- PM- PM- PM- PM-

09:00 07:00  07:00 07:00 07:00 07:00 07:00

AM AM AM AM AM AM AM
*Duration 10 10 10 10 10 10 10 10.0
of Sleep
(hours)
Quality of 2 2 3 3 4 3 3 2.86
Sleep
(PSS)
Sleep 11:00 11:00 10:30 10:30 10:30 10:30 10:30
Times PM - PM - PM- PM- PM- PM- PM-

09:30 09:30  06:50 06:50 06:50 06:50 06:50

AM AM AM AM AM AM AM
Duration  10.5 10.5 8.33 8.33 8.33 8.33 8.33 8.95
of Sleep
(hours)
Quality of 1 1 1 1 2 2 1 1.29
Sleep
(PSS)
Sleep 08:00 08:00  08:00 08:00 08:00 08:00 08:00
Times PM - PM - PM- PM- PM- PM- PM-

06:30 07:00  07:00 07:00 07:00 07:00 07:00

AM AM AM AM AM AM AM
Duration  10.5 11 11 11 11 11 11 10.93
of Sleep
(hours)
Quality of 3 1 1 2 1 2 1 1.57
Sleep
(PSS)
Sleep 09:30 09:30  09:30 09:30 09:30 09:30 09:30
Times PM - PM - PM- PM- PM- PM- PM-

10:30 08:00 07:00 07:00 07:00 07:00 07:00

AM AM AM AM AM AM AM
Duration 13 10.5 9.5 9.5 9.5 9.5 9.5 10.14
of Sleep
(hours)
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Quality of 1 5 1 1 1 1 1 1.57
Sleep
(PSS)
Sleep 01:00 10:00 11:00 11:00 11:00 11:00  11:00
Times AM - PM - PM- PM- PM- PM- PM-

09:00 08:00  07:00 07:00 07:00 07:00 07:00

AM AM AM AM AM AM AM
Duration 8 10 8 8 8 8 8 8.29
of Sleep
(hours)
Quality of 1 1 1 1 1 1 1 1.0
Sleep
(PSS)
Sleep 09:00 09:00  09:00 09:00 09:00 09:00 09:00
Times PM - PM - PM- PM- PM- PM- PM-

08:00 08:00 07:30 07:30 07:30 07:30 07:30

AM AM AM AM AM AM AM
Duration 11 11 10.5 10.5 10.5 10.5 10.5 10.64
of Sleep
(hours)
Quality of 3 1 1 5 5 1 1 2.43
Sleep
(PSS)
Sleep 09:25 09:25  09:00 09:00 09:00 09:00 09:00
Times PM - PM - PM- PM- PM- PM- PM-

07:35 07:35  07:00 07:00 07:00 07:00 07:00

AM AM AM AM AM AM AM
Duration 10.166 10.166 10 10 10 10 10 10.05
of Sleep
(hours)
Quality of 1 1 2 4 1 1 1 1.57
Sleep
(PSS)
Sleep 6:00 9:00 09:30  09:30  09:30  09:30  09:30
Times PM - PM - PM- PM- PM- PM- PM-

7:00 7:00 07:30 07:30 07:30 07:30 07:30

AM AM PM PM PM PM PM
Duration 13 10 10 10 10 10 10 10.43
of Sleep
(hours)
Quality of 2 1 1 1 1 1 1 1.14
Sleep
(PSS)
Sleep 09:30 9:30 9:30 9:30 9:30 9:30 9:30
Times PM - PM - PM- PM- PM- PM- PM-
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08:00 7:00 7:00 7:00 7:00 7:00 7:00

AM AM AM AM AM AM AM
Duration  10.5 9.5 9.5 9.5 9.5 9.5 9.5 9.64
of Sleep
(hours)
Quality of 2 2 3 2 3 2 2 2.29
Sleep
(PSS)
Sleep 10:00 09:00  09:00 09:00 09:00 09:00 09:00
Times PM - PM - PM- PM- PM- PM- PM-

07:00 07:00  07:00 07:00 07:00 07:00 07:00

AM AM AM AM AM AM AM
Duration 9 10 10 10 10 10 10 9.86
of Sleep
(hours)
Quality of 1 2 4 5 5 4 4 3.57
Sleep
(PSS)
Sleep 09:30 10:00  09:30 09:30 09:30 09:30  09:30
Times PM - PM - PM- PM- PM- PM- PM-

07:05 07:50 07:05 07:05 07:05 07:05 07:05

AM AM AM AM AM AM AM
Duration  10.42 9.83 1042 1042 1042 1042 1042 10.34
of Sleep
(hours)
Quality of 3 5 2 2 2 1 1 2.29
Sleep
(PSS)
Sleep 01:10 09:00 09:00 09:30 09:30 09:30 10:00
Times AM - PM - PM- PM- PM- PM- PM-

09:00 07:15  07:15 07:15 07:15 07:15 09:30

AM AM AM AM AM AM AM
Duration  7.83 9.75 9.75 9.75 9.75 9.75 11.5 9.73
of Sleep
(hours)
Quality of 3 1 2 1 2 2 5 2.29
Sleep
(PSS)*
Sleep 10:30 09:30  09:30 09:30 10:30 09:30 10:45
Times* PM - PM - PM- PM- PM- PM- PM-

7:45 06:45  06:45 06:45 08:30 06:45 10:00

AM AM AM AM AM AM AM
Duration  9.25 9.25 9.25 9.25 10 9.25 11.25 9.64
of Sleep
(hours)*
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Quality of 1 3 5 3 4 5 5 3.71

Sleep
(PSS)*
Sleep 11:05 10:40  09:10 09:10 09:10 09:10 09:10
Times* PM - PM- PM- PM- PM- PM- PM-

08:10 08:00 08:30 07:15 07:15 07:15 07:15

AM AM AM AM AM AM AM
Duration  9.08 9.33 11.33 10.08 10.08 10.08 10.08 10.01
of Sleep
(hours)*

Summary of participant sleep data. Participants marked with an asterisk were excluded from analyses
due to excessive data noise.
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Table A2. 200 ms ERP Permutation Statistics

Condition Site Time Range (ms) | Cluster Mass p value
intensity Cz 200-400 12.031 <0.004
intensity F3 0-200 13.306 <0.004
intensity F4 200-400 15.247 <0.004
location Fz 400-600 6.779 <0.004
location Cz 200-400 9.596 <0.004
location C4 0-200 4.710 <0.004
pitch Fz 0-200 9.801 <0.004
pitch C3 0-200 8.327 <0.004
pitch Cz 0-200 9.468 <0.004
rhythm Fz 0-200 13.438 <0.004
rhythm C3 400-600 5.848 <0.004
rhythm Cz 200-400 9.728 <0.004
rhythm F3 200-400 9.950 <0.004
slide Fz 0-200 19.949 <0.004
slide Cz 0-200 17.293 <0.004
slide C4 0-200 17.375 <0.004
timbre Fz 0-200 21.314 <0.004
timbre C3 200-400 11.548 <0.004
timbre Cz 0-200 21.094 <0.004
timbre F4 0-200 8.608 <0.004

Results of cluster permutation testing for all music conditions at all scalp sites across different time
windows (0-200 ms, 200-400 ms, 400-600 ms, and 600-800 ms) comparing sleep groups (Sleep More
vs. Sleep Less).
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Table A3. Hemispheric Activity Comparison

Sleep Group Electrode Pair t value p value
less Frontal (F4 vs F3) | 5.042 0.007
less Central (C4 vs C3) | -0.552 0.610
more Frontal (F4 vs F3) | 0.726 0.500
more Central (C4 vs C3) | -0.494 0.642

Results of t-tests comparing activation between homologous electrode pairs across
hemispheres (left: F3 & C3, right: F4 & C4) within each sleep group. Positive t-
values reflect greater activity in the right hemisphere.
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Figure B1. 64-Channel HydroCel Geodesic Sensor Net
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Electrode layout for the EEG sensor net used in the present study (Electrical Geodesics, Inc., 2007). Red

circles indicate the six primary frontocentral sites (C3, C4, Cz, I3, F4, Fz) selected for statistical
analysis.

41



Figure B2. Source Localization — Sleep More Group
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Sagittal, coronal, 3D, and transverse MRI views (top left to bottom right) illustrating source-localized
brain activity in the Sleep More group.
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Figure B3. Source Localization — Sleep Less Group
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Sagittal, coronal, 3D, and transverse MRI views (top left to bottom right) illustrating source-localized
brain activity in the Sleep Less group.
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